Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

NECESSITY AND SOME NON-MODAL PROPOSITIONAL CALCULI

BISWAMBHAR PAHI

Sometimes in a non-modal propositional calculus (PC) containing a connective (C) for implication a satisfactory definition of 'it is necessary that p'(Lp)' is available. Thus, in the well-known system E of entailment, Lp may be defined as CCppp, where 'C' denotes the non-truth-functional implication taken as a primitive connective. A non-modal PC may fail to permit an intuitively satisfactory definition of necessity either because it is too weak or because it is too strong. A non-trivial example of the former case is provided in [5], where the authors use the following four-valued model \mathcal{N} (with starred elements as designated)

С	0	1	2	3
0	3	3	3	3
1	0	2	0	3
*2	0	3	2	3
*3	0	0	0	3

of the pure implicational calculus (PIC) P_I of ticket entailment defined in [1], to show that there is no pure implicational (PI) wff $\alpha(p)$ in the single variable p satisfying the following conditions:

(1) $C \alpha(p)p$ is a theorem of P_I,

(2) $Cp \alpha(p)$ is not a theorem of P_I,

(3) if β is a theorem of P_I, then $\alpha(p/\beta)$ is a theorem of P_I,

and

(4) for any δ , θ , $CC\delta\theta C\alpha(p/\delta)\alpha(p/\theta)$ is a theorem of P₁.

Corresponding to the modal axiom CLCqrCLqLr consider now the condition

(4*) $C \alpha(p/C\delta\theta) C \alpha(p/\delta) \alpha(p/\theta)$ is a theorem of P₁.

Since transitivity of implication and modus ponens are available in P_I , if $\alpha(p)$ satisfies (4), in view of (1), it will also satisfy (4*). The authors of [5] are entitled to the following:

Received October 2, 1972