Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

THE FORM OF REDUCTIO AD ABSURDUM

J. M. LEE

A recent discussion of this topic by Donald Scherer in [6], pp. 247-252, begins thus:

Reductio ad Absurdum is clearly a valid argument form. Yet logicians tend in their writings either to ignore it or to treat it in a confusing and confused way. The aims of this paper are to expose this confusion as it appears in one of the fullest accounts given (by Copi in his *Symbolic Logic*), and to develop an adequate formulation.

After giving the form of Copi's *reductio ad absurdum* proofs,¹ Scherer argues (1) "that the form presented by Copi fails to manifest the basis upon which *reductio ad absurdum* is informally conceived to rest," (2) "that it is given a form which is . . . less than intuitive," and (3) that it is given a form which is "both *epistemologically and formally*² impossible." It seems to me unprofitable to argue about (1) and (2), since one man's informal conception or intuition is all too often another's stumbling-block. Besides, even if Scherer's intuition is better than Copi's, it does not follow that Copi is confused: to show confusion on Copi's part, Scherer must prove (3), which I now discuss.

Consider first what Scherer calls the *epistemological* impossibility. According to him, Copi's typical *reductio* sequence, including the steps³

1.	$\gamma \cdot \sim \gamma$	
2.	r	1, Simp.
3.	$\sim r \cdot r$	1, Com.
4.	$\sim r$	3, Simp.
5.	$\boldsymbol{\gamma} \lor \boldsymbol{q}$	2, Add.
6.	q	5, 4, D.S.

is epistemologically impossible because, on the standard tabular interpretations of negation, conjunction and alternation, the conclusion q (line 6) is not acceptably derived from the premise $r \cdot \sim r$ (line 1): "the derivation is unacceptable because it involves the supposition that both conjuncts of the contradiction $r \cdot \sim r$ are true." How then does the derivation involve this supposition?