Notre Dame Journal of Formal Logic Volume XIV, Number 2, April 1973 NDJFAM

A NEW REPRESENTATION OF S5

STEVEN K. THOMASON

We consider first a modal language with propositional constants (and no variables) and show that there is a unique set H of formulas of this language meeting certain attractive syntactical conditions; moreover H is the set of theses of a very simple calculus. We then show that the theses of S5 are characterized by the fact that all their instances are in H.*

Let \mathcal{L}_c be the language having an infinite set of "propositional constants" and connectives \neg , \vee , and \square used in the usual way. As usual, other connectives are used as abbreviations. If S is a string of symbols, s_1, \ldots, s_n are distinct symbols, and S_1, \ldots, S_n are strings of symbols, then $S(S_1, \ldots, S_n/S_1, \ldots, s_n)$ is the result of replacing each symbol $s_i(i=1,\ldots,n)$ in S by the string S_i . A tautology is a string of the form $X(S_1,\ldots,S_n/x_1,\ldots,x_n)$ where X is a tautology of the classical propositional calculus and x_1,\ldots,x_n are propositional variables. A set H of formulas of \mathcal{L}_c is correct if for all formulas A and B of \mathcal{L}_c

- (1) If A is a tautology then $A \in H$.
- (2) If A has no occurrences of \square and $A \in H$, then A is a tautology.
- (3) If $A \in H$ and $A \Longrightarrow B \in H$, then $B \in H$.
- (4) $A \in H$ if and only if $\square A \in H$.
- (5) Either $A \in H$ or $\neg \Box A \in H$.

Let \mathcal{L}_v be the language which is like \mathcal{L}_c except that \mathcal{L}_v has a countably infinite set of "propositional variables" rather than propositional constants. A set J of formulas of \mathcal{L}_v is said to be correct if it consists of all formulas X of \mathcal{L}_v such that every formula of \mathcal{L}_c of the form $X(A_1, \ldots, A_n/x_1, \ldots, x_n)$ is a member of H, where H is a correct set of formulas of \mathcal{L}_c .

Let ${\bf C}$ be the formal system whose language is ${\bf L}_c$, whose axioms are an appropriate set of tautologies and all formulas of the form

$$\Diamond \& \{a_i^* | i = 1, \ldots, n\}$$

^{*}This work was supported in part by the National Research Council of Canada, grant No. A-4065.