A NEW REPRESENTATION OF S5

STEVEN K. THOMASON

We consider first a modal language with propositional constants (and no variables) and show that there is a unique set H of formulas of this language meeting certain attractive syntactical conditions; moreover H is the set of theses of a very simple calculus. We then show that the theses of S5 are characterized by the fact that all their instances are in H.*

Let \mathcal{L}_{c} be the language having an infinite set of 'propositional constants" and connectives $7, v$, and \square used in the usual way. As usual, other connectives are used as abbreviations. If S is a string of symbols, s_{1}, \ldots, s_{n} are distinct symbols, and S_{1}, \ldots, S_{n} are strings of symbols, then $S\left(S_{1}, \ldots, S_{n} / s_{1}, \ldots, s_{n}\right)$ is the result of replacing each symbol $s_{i}(i=1, \ldots, n)$ in S by the string S_{i}. A tautology is a string of the form $X\left(S_{1}, \ldots, S_{n} / x_{1}, \ldots, x_{n}\right)$ where X is a tautology of the classical propositional calculus and x_{1}, \ldots, x_{n} are propositional variables. A set H of formulas of \mathcal{L}_{c} is correct if for all formulas A and B of \mathcal{L}_{c}
(1) If A is a tautology then $A \in H$.
(2) If A has no occurrences of \square and $A \in H$, then A is a tautology.
(3) If $A \in H$ and $A \Rightarrow B \in H$, then $B \in H$.
(4) $A \in H$ if and only if $\square A \in H$.
(5) Either $A \in H$ or $\neg \square A \in H$.

Let \mathscr{L}_{v} be the language which is like \mathcal{L}_{c} except that \mathscr{L}_{v} has a countably infinite set of "propositional variables" rather than propositional constants. A set J of formulas of \mathcal{L}_{v} is said to be correct if it consists of all formulas X of \mathscr{L}_{v} such that every formula of \mathscr{L}_{c} of the form $X\left(A_{1}, \ldots, A_{n} /\right.$ x_{1}, \ldots, x_{n}) is a member of H, where H is a correct set of formulas of \mathcal{L}_{c}.

Let \mathbb{C} be the formal system whose language is \mathcal{L}_{c}, whose axioms are an appropriate set of tautologies and all formulas of the form

$$
\diamond \&\left\{a_{i}^{*} \mid i=1, \ldots, n\right\}
$$

[^0]
[^0]: *This work was supported in part by the National Research Council of Canada, grant No. A-4065.

