Notre Dame Journal of Formal Logic Volume XIV, Number 2, April 1973 NDJFAM

RADO'S THEOREM AND SOLVABILITY OF SYSTEMS OF EQUATIONS

ALEXANDER ABIAN

In this paper we consider finite or infinite systems of equations each in finitely many unknowns where each unknown ranges over a finite domain. We prove that such a system has a solution if and only if every finite subsystem has a solution. Moreover, we introduce the notion of an expanding system of equations and its partial solution and we give a necessary and sufficient condition for the existence of a partial solution of such a system of equations. Furthermore, we prove that Rado's theorem [1] is equivalent to the statement that if each equation of an expanding system of equations has a solution then the system has a partial solution.

In what follows we consider infinitely many (not necessarily denumerably many) unknowns (variables) $x_1, x_2, \ldots, x_j, \ldots$ ranging respectively over nonempty finite domains $D_1, D_2, \ldots, D_j, \ldots$. Moreover, by a function we mean a function of finitely many unknowns (variables). Hence, a function in the unknowns x_i, \ldots, x_k is a mapping from $D_i \times \ldots \times D_k$. We do not impose any restriction (except for being nonempty) on the range of a function since that is not needed for our purpose.

From a given function we construct equations in the usual way. Thus, if

(1) $F_i(\ldots, x_i, \ldots)$

is a function then the configuration

(2) $F_i(..., x_j, ...) = c_i$

is an equation, where c_i is an element of the range of the function given in (1). The notion of a solution of an equation as well as that of a system of equations is self-explanatory.

In the sequel, we let V denote a nonempty index set for the unknowns and we consider equations indexed by a nonempty set E. Although we make no restrictions (except for being nonzero) on the cardinalities of sets V and E, we would like to emphasize that each equation has finitely many unknowns and each unknown ranges over a nonempty finite domain.

Motivated by notation (2), we prove the following theorem.

Received October 28, 1970