RADO'S THEOREM AND SOLVABILITY OF SYSTEMS OF EQUATIONS

ALEXANDER ABIAN

In this paper we consider finite or infinite systems of equations each in finitely many unknowns where each unknown ranges over a finite domain. We prove that such a system has a solution if and only if every finite subsystem has a solution. Moreover, we introduce the notion of an expanding system of equations and its partial solution and we give a necessary and sufficient condition for the existence of a partial solution of such a system of equations. Furthermore, we prove that Rado's theorem [1] is equivalent to the statement that if each equation of an expanding system of equations has a solution then the system has a partial solution.

In what follows we consider infinitely many (not necessarily denumerably many) unknowns (variables) $x_{1}, x_{2}, \ldots, x_{j}, \ldots$ ranging respectively over nonempty finite domains $D_{1}, D_{2}, \ldots, D_{j}, \ldots$ Moreover, by a function we mean a function of finitely many unknowns (variables). Hence, a function in the unknowns x_{i}, \ldots, x_{k} is a mapping from $D_{i} \times \ldots \times D_{k}$. We do not impose any restriction (except for being nonempty) on the range of a function since that is not needed for our purpose.

From a given function we construct equations in the usual way. Thus, if
(1) $F_{i}\left(. ., x_{j}, \ldots\right)$
is a function then the configuration
(2) $F_{i}\left(. ., x_{j}, ..\right)=c_{i}$
is an equation, where c_{i} is an element of the range of the function given in (1). The notion of a solution of an equation as well as that of a system of equations is self-explanatory.

In the sequel, we let V denote a nonempty index set for the unknowns and we consider equations indexed by a nonempty set E. Although we make no restrictions (except for being nonzero) on the cardinalities of sets V and E, we would like to emphasize that each equation has finitely many unknowns and each unknown ranges over a nonempty finite domain.

Motivated by notation (2), we prove the following theorem.

