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RADO'S THEOREM AND SOLVABILITY OF

SYSTEMS OF EQUATIONS

ALEXANDER ABIAN

In this paper we consider finite or infinite systems of equations each in

finitely many unknowns where each unknown ranges over a finite domain.

We prove that such a system has a solution if and only if every finite

subsystem has a solution. Moreover, we introduce the notion of an expand-

ing system of equations and its partial solution and we give a necessary

and sufficient condition for the existence of a partial solution of such a

system of equations. Furthermore, we prove that Rado's theorem [l] is

equivalent to the statement that if each equation of an expanding system of

equations has a solution then the system has a partial solution.

In what follows we consider infinitely many (not necessarily denumer-

ably many) unknowns (variables) xλ, x2, . . . , Xj, . . . ranging respectively

over nonempty finite domains Dl9 D2, . . . , Dj , . . . . Moreover, by a func-

tion we mean a function of finitely many unknowns (variables). Hence, a

function in the unknowns Λ'Z , . . . , Xk is a mapping from ΰ/X . . . XD^. We

do not impose any restriction (except for being nonempty) on the range of a

function since that is not needed for our purpose.

From a given function we construct equations in the usual way. Thus, if

(1) FA. . ,xh . .)

is a function then the configuration

(2) Fi(. . ,Xj, . .) = a

is an equation, where c, is an element of the range of the function given in

(1). The notion of a solution of an equation as well as that of a system of

equations is self-explanatory.

In the sequel, we let V denote a nonempty index set for the unknowns

and we consider equations indexed by a nonempty set E. Although we make

no restrictions (except for being nonzero) on the cardinalities of sets V and

E, we would like to emphasize that each equation has finitely many

unknowns and each unknown ranges over a nonempty finite domain.

Motivated by notation (2), we prove the following theorem.
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