Notre Dame Journal of Formal Logic Volume XIV, Number 1, January 1973 NDJFAM

A NOTE ON IMPLICATIVE MODELS

E. L. MARSDEN

1. Introduction. Implicative models were first considered by Leon Henkin who explored the relation between certain formal (logical) systems and certain algebraic structures. More precisely, implicative models correspond to a logical system whose only logical connective is implication and whose laws are satisfied by classical, intuitionistic and modal logics.

Several examples of implicative models are Boolean lattices, Brouwerian semi-lattices, and closures algebras. Henkin's definition of an implicative model has been dualized to conform with common notation for Brouwerian semi-lattices. In this note it is shown that several significant results for Brouwerian semi-lattices also obtain in the setting of implicative models.

2. Implicative Models. An implicative model [2] is an algebraic system $\langle X, *, 1 \rangle$ where X is a set, 1 is an element of X, and * is a binary operation satisfying the axioms listed below. It is convenient to use the relation \leq defined by $x \leq y$ if x * y = 1. The following axioms hold for all x, y, z in X:

```
A_1  y \le x * y

A_2  x * (y * z) \le (x * y) * (x * z)

A_3  x \le 1

A_4  x = y \text{ when } x \le y \text{ and } y \le x.
```

Proposition 1.

- (i) If $1 \le x$, then 1 = x.
- (ii) x * 1 = 1.
- (iii) x * x = 1.
- (iv) 1 * x = x.
- (v) If $x \le y$ and $y \le z$, then $x \le z$.
- (vi) $\langle X, \leq \rangle$ is a partially ordered set.

Proposition 2.

- (i) If $x \le y$, then $y * z \le x * z$.
- (ii) x * (y * z) = y * (x * z).