EFFECTIVE EXTENDABILITY AND FIXED POINTS

THOMAS H. PAYNE

Let α be any sequence and let $\varphi_{1}, \varphi_{2}, \ldots$ be a standard enumeration of the partial recursive functions. A p.r.f. δ is said to be a fixed-point algorithm for α if and only if $\delta(n)$ is an α-fixed point for φ_{n} (i.e., $n \in \operatorname{Dom} \delta$ and $\alpha(\delta(n))=\alpha\left(\varphi_{n}(\delta(n))\right)$ whenever φ_{n} is total). α has the effective fixed-point property if and only if α has a total fixed-point algorithm. The purpose of this paper is to show that the effective fixed-point property is more properly viewed as an extendability property since:
(1) α has the e.f.p.p. if and only if every partial recursive function ψ has a total recursive α-extension f (i.e., $\alpha(f(n))=\alpha(\psi(n))$ for all $n \in \operatorname{Dom} \psi$).
(2) There is a sequence having a fixed-point algorithm but not the e.f.p.p. (Hence totalness of the fixed-point algorithm is crucial to the e.f.p.p.)
(3) If there is a total recursive function f such that $f(x)$ is an α-fixed point of φ_{x} whenever φ_{x} is total and constant, then α has the e.f.p.p. (Hence the fixed points are somewhat incidental to the e.f.p.p. since every sequence has a nontotal algorithm which finds fixed points for constant functions, for example, $\lambda x\left[\varphi_{x}(1)\right]$.)
Proof of 1. See [3], Lemma 1.1.
Proof of 2. We let α be the canonical sequence of equivalence classes associated with the equivalence relation \approx constructed below. Along with \approx we construct a partial recursive function ψ having no total recursive α-extension. Thus α lacks the e.f.p.p. by (1).

Let T_{1}, T_{2}, \ldots be a recursive sequence of disjoint infinite recursive sets. Members of T_{x} are called test values for φ_{x}. Let f be a one to one recursive enumeration of $\left\{\langle x, y\rangle \mid y \in \operatorname{Dom} \varphi_{x}\right\}$. We suppose that $\varphi_{1}, \varphi_{2}, \ldots$ are being constructed in stages so that $\varphi_{x}(y)$ becomes defined at stage $f^{-1}(\langle x, y\rangle)$ and at this stage we perform the following three steps in the construction of \approx and ψ :
(Step 1) If φ_{x} does not already have an α-fixed point we give it one by letting $y \approx \varphi_{x}(y)$ provided that we do not thereby cause the violation of a prohibition of order x or less.
(Step 2) If y is a test value of φ_{x} and φ_{x} agrees, modulo \approx, with ψ

