Notre Dame Journal of Formal Logic Volume XIV, Number 1, January 1973 NDJFAM

A NOTE ON A THEOREM OF C. YATES

WILLIAM D. JACKSON

1. Introduction. Let E denote the collection of all non-negative integers. We recall from [2] that a one-to-one function t_n (from E into E) is regressive if the mapping $t_{n+1} \to t_n$ has a partial recursive extension; and is retraceable if it is both strictly increasing and regressive. An infinite set is said to be regressive if it is the range of a regressive function; and is retraceable if it is the range of a retraceable function. A one-to-one function a_n is indexed if the mapping $a_n \to n$ has a partial recursive extension; and a set is indexed if it is the range of an indexed function. In [4] C. Yates proved the following result:

Theorem A. (Yates). Let α be an infinite set. Then α is strongly hyperhyperimmune $\iff \alpha$ contains no infinite retraceable subset.

In this paper we arrive at a new proof of this result. It is somewhat easier than the proof in [4] (see also: [3, pp. 250-251]), and also, it makes use of a basic property of indexed sets.

- 2. Indexed sets. Let $\{w_n\}$ denote the usual effective enumeration of the collection of all recursively enumerable sets. We call a sequence $\{w_{f(x)}\}$ an array if
- (a) f is a one-to-one recursive function,
- (b) for each x, $w_{f(x)} \neq \phi$, and
- (c) for each x and y, if $x \neq y$ then $w_{f(x)} \cap w_{f(y)} = \phi$.

We recall from [3, p. 250] that an infinite set α is said to be *strongly hyperhyperimmune* if for every array $\{w_{f(x)}\}$, there is a number x such that $w_{f(x)} \cap \alpha = \phi$.

Theorem 1. Let α be an infinite set. Then α is a strongly hyperhyperimmune $\iff \alpha$ contains no infinite indexed subset.

Proof. (\Longrightarrow) Assume that α is strongly hyperhyperimmune and suppose that α contains an infinite indexed subset. Let a_n be an indexed function that ranges over a subset of α and let p denote a partial recursive function such that, for each number n,