Notre Dame Journal of Formal Logic Volume XIII, Number 4, October 1972 NDJFAM

A NEW PROOF OF COMPLETENESS

R. L. GOODSTEIN

We present a new proof of the completeness of the formalisation \mathcal{P} of sentence logic based on the first four axioms of Russell's *Principia*, with substitution and modus ponens as rules of inference. For the sake of brevity we take for granted various elementary properties of \mathcal{P} , for instance that conjunction and disjunction are commutative and associative and that each distributes over the other; that $r \vee \neg r$ is provable in \mathcal{P} ; that from $A \to P$ and $B \to P$ we may infer $(A \vee B) \to P$, and from $P \to A$, $P \to B$ we may infer $P \to (A \& B)$. It follows that if T denotes the provable sentence $r \vee \neg r$, and F denotes $\neg T$ then the equivalences

$$p \longleftrightarrow (p \lor \mathbf{F}), \mathbf{T} \longleftrightarrow (p \lor \mathbf{T}), p \longleftrightarrow (p \& \mathbf{T})$$

are all provable in \mathcal{P} from which it follows that

(*)
$$p \leftrightarrow (p \lor \mathbf{F}) \& (\neg p \lor \mathbf{T})$$

is provable in P.

We start by observing that the negation of any one of the sentences of the set

and the disjunction of any two, is equivalent to a sentence of the set. It follows (by induction on the number of negations and disjunctions in a sentence) that any sentence $\mathfrak{S}(p)$ in the single variable p is equivalent to one of p, $\neg p$, **T**, **F**. Since

are all provable, it follows that to each sentence $\mathfrak{S}(p)$ corresponds α , β such that

$$\mathbf{\mathfrak{S}}(p) \longleftrightarrow (p \lor \alpha) \And (\neg p \lor \beta)$$

where each of α , β is one of **T**, **F** (and so does not contain the variable *p*).

Received January 15, 1972