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ANALOGOUS CHARACTERIZATIONS OF
FINITE AND ISOLATED SETS

J. BARBACK, W. D. JACKSON, and M. PARNES

Introduction. Let E = {0, 1 ,2, . . .}. Members of E will be called numbers.
A set shall mean a subset of E, and a function shall mean a function
from a set into E. For a function /, then δ/ will denote its domain.
Post [2] introduced simple sets; i.e., recursively enumberable (r.e.) sets
with infinite isolated complements. Dekker [1] observed that if Dedekind's
definition of finiteness (a is finite iff a is not equivalent to any proper
subset of a) is made effective in a natural way, then exactly the class of
isolated sets is obtained. The purpose of this note is to characterize when
a set a is finite, by giving a condition C(α) that involves partial orderings of
a, and proving

Theorem A. a is finite ΦΦC(a).

In addition, we effectivize, in the spirit of Dekker, the condition C(α)
obtaining Ce(a), and prove

Theorem B. a is isolated <€ΦCe(a).

1. C(a) and Ce(a). We write Pa if a is a set and P is a binary relation that
partially orders a. If Pa and Qβ, then we write Pa ^ Qβ if there is a function
/such that

m (a c δ/, / i s one-to-one on a,f(a) c β,
{ } land (v*, y e a) [xPy=>f(x) Qf(y)l

The condition C(α) is defined by,

(VP, Q) [Pa * Qa and Qa^Pa^Pa~ Qal

where Pa ~ Qameans that there is a function/ such that,

(9, (oi c δ/, / is one-to-one on α, /(α) = α
U (and (Vx, y e a) [xPyΦΦf(x) Qf(y)].

If Pa and Qβ then we write Pa ^* Qβ if there is a partial recursive function /
that satisfies (1). The condition Ce(α) is defined by
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