Notre Dame Journal of Formal Logic Volume XIII, Number 4, October 1972 NDJFAM

ANALOGOUS CHARACTERIZATIONS OF FINITE AND ISOLATED SETS

J. BARBACK, W. D. JACKSON, and M. PARNES

Introduction. Let $E = \{0, 1, 2, ...\}$. Members of E will be called numbers. A set shall mean a subset of E, and a function shall mean a function from a set into E. For a function f, then δf will denote its domain. Post [2] introduced simple sets; i.e., recursively enumberable (r.e.) sets with infinite isolated complements. Dekker [1] observed that if Dedekind's definition of finiteness (α is finite iff α is not equivalent to any proper subset of α) is made effective in a natural way, then exactly the class of isolated sets is obtained. The purpose of this note is to characterize when a set α is finite, by giving a condition $C(\alpha)$ that involves partial orderings of α , and proving

Theorem A. α is finite $\iff C(\alpha)$.

In addition, we effectivize, in the spirit of Dekker, the condition $C(\alpha)$ obtaining $C^{e}(\alpha)$, and prove

Theorem B. α is isolated $\iff C^{e}(\alpha)$.

1. $C(\alpha)$ and $C^{e}(\alpha)$. We write P_{α} if α is a set and P is a binary relation that partially orders α . If P_{α} and Q_{β} , then we write $P_{\alpha} \leq Q_{\beta}$ if there is a function f such that

(1) $\begin{cases} \alpha \subseteq \delta f, \ f \text{ is one-to-one on } \alpha, f(\alpha) \subseteq \beta, \\ \text{and } (\forall x, \ y \in \alpha) \ [xPy \Longrightarrow f(x) \ Qf(y)]. \end{cases}$

The condition $C(\alpha)$ is defined by,

$$(\forall P, Q) [P_{\alpha} \leq Q_{\alpha} \text{ and } Q_{\alpha} \leq P_{\alpha} \Rightarrow P_{\alpha} \sim Q_{\alpha}],$$

where $P_{\alpha} \sim Q_{\alpha}$ means that there is a function f such that,

(2) $\begin{cases} \alpha \subseteq \delta f, f \text{ is one-to-one on } \alpha, f(\alpha) = \alpha \\ \text{and } (\forall x, y \in \alpha) [x P y \iff f(x) Q f(y)]. \end{cases}$

If P_{α} and Q_{β} then we write $P_{\alpha} \leq Q_{\beta}$ if there is a partial recursive function f that satisfies (1). The condition $C^{e}(\alpha)$ is defined by

Received October 3, 1970