Notre Dame Journal of Formal Logic
Volume XIII, Number 3, July 1972
NDJFAM

SOME RESULTS CONCERNING FINITE MODELS FOR SENTENTIAL CALCULI

DOLPH ULRICH

Terminology and notation. Let $S_{S_{0}}$ be the set of wffs built up in the usual way from denumerably many letters p_{1}, p_{2}, \ldots and finitely many connectives F_{1}, \ldots, F_{n} (each F_{i} a k_{i}-place connective for some positive integer k_{i}): letters are wffs, and $F_{i} \alpha_{1} \ldots \alpha_{k_{i}}$ is a wff if $\alpha_{1}, \ldots, \alpha_{k_{i}}$ are wffs. A rule of inference is an s-tuple of wffs; and a set of wffs T is closed under a rule of inference $\left\langle\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}\right\rangle$ just in case $\gamma_{s} \in T$ whenever γ_{1}, \ldots, γ_{s-1}, γ_{s} result from $\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}$, respectively, by a uniform substitution of wffs for letters, and $\gamma_{1}, \ldots, \gamma_{s-1} \in T$.
$\mathbf{P}=\left\langle T, A, R_{1}, \ldots, R_{r}\right\rangle$ is a sentential calculus if and only if A, the set of axioms of P , is a set of wffs, R_{1}, \ldots, R_{r} are rules of inference, and T, the set of theorems of \mathbf{P}, is the least set containing A and closed under substitution and each of R_{1}, \ldots, R_{r}. (Where $r=0, T$ is simply the set of substitution instances of members of A.) For each such \mathbf{P} define an equivalence relation, \cong_{p}, on $S_{\aleph_{0}}$ by letting $\alpha \cong_{p} \beta$ just in case replacement of zero or more occurrences of α by β in each wff in T (respectively, not in T) results in a wff in T (respectively, not in T). For $\alpha \in S \subset S_{\aleph_{0}}$, let $[\alpha] \cong_{P \mid S}$ be the set of β 's in S such that $\alpha \cong_{P} \beta$ and let S / \cong_{P} be the set of $[\alpha] \cong_{P \mid S}$'s such that $\alpha \in S$.
$\mathfrak{M}=\left\langle V, D, f_{1}, \ldots, f_{n}\right\rangle$ is a matrix if and only if V is a non-empty set, $D \subset V$, and each f_{i} is a k_{i}-ary operation in V. A function $h: S_{\aleph_{0}} \rightarrow V$ is a value function of \mathfrak{M} just in case $h\left(F_{i} \alpha_{1} \ldots \alpha_{k_{i}}\right)=f_{i}\left(h\left(\alpha_{1}\right), \ldots, h\left(\alpha_{k_{i}}\right)\right)$ for all $\alpha_{1}, \ldots, \alpha_{k_{i}} \in S_{\aleph_{0}}$, and α is an \mathfrak{M}-tautology just in case $h(\alpha) \epsilon D$ for every value function h of \mathfrak{M}. We denote the set of \mathfrak{M}-tautologies by ' $\mathrm{E}(\mathfrak{M})$ '. Where $\mathfrak{M}=\left\langle V, D, f_{1}, \ldots, f_{n}\right\rangle$ and $\mathfrak{M}^{\prime}=\left\langle V^{\prime}, D^{\prime}, f_{1}{ }^{\prime}, \ldots, f_{n}{ }^{\prime}\right\rangle$ are matrices the matrix $\mathfrak{M} \times \mathfrak{M}^{\prime}=\left\langle V \times V^{\prime}, D \times D^{\prime}, f_{1}^{X}, \ldots, f_{n}^{X}\right\rangle$, where $f_{i}^{X}\left\langle\left\langle v_{1}, v_{1}{ }^{\prime}\right\rangle, \ldots\right.$, $\left.\left\langle v_{k_{i}}, v_{k_{i}}{ }^{\prime}\right\rangle\right)=\left\langle f_{i}\left(v_{1}, \ldots, v_{k_{i}}\right), f_{i}^{\prime}\left(v_{1}^{\prime}, \ldots, v_{k_{i}}{ }^{\prime}\right\rangle\right\rangle$, is called the product of \mathfrak{m} and \mathfrak{M}^{\prime}. Evidently (cf. [5]), $\mathrm{E}\left(\mathfrak{M} \times \mathfrak{M}^{\prime}\right)=\mathrm{E}(\mathfrak{M}) \cap \mathrm{E}\left(\mathfrak{M}^{\prime}\right)$.

The matrix $\mathfrak{M}=\left\langle V, D, f_{1}, \ldots, f_{n}\right\rangle$ is a model of the sentential calculus $\mathbf{P}=\left\langle T, A, R_{1}, \ldots, R_{r}\right\rangle$ if $T \subset \mathbf{E}(\mathfrak{M})$ and for each value function h of \mathfrak{M} and each rule $\left\langle\beta_{1}, \ldots, \beta_{s-1}, \beta_{s}\right\rangle$ of \mathbf{P}, if $h\left(\beta_{1}\right), \ldots, h\left(\beta_{s-1}\right) \in D$ then $h\left(\beta_{s}\right) \in D$. If \mathfrak{M} is a model of \mathbf{P} with $E(\mathbb{M})=T$, we call \mathfrak{M} a characteristic matrix for \mathbf{P}.

For each set of letters L we let S_{L} be the set of wffs in which the only

