Notre Dame Journal of Formal Logic Volume XIII, Number 3, July 1972 NDJFAM

SOME RESULTS CONCERNING FINITE MODELS FOR SENTENTIAL CALCULI

DOLPH ULRICH

Terminology and notation. Let S_{\aleph_0} be the set of wffs built up in the usual way from denumerably many letters p_1, p_2, \ldots and finitely many connectives F_1, \ldots, F_n (each F_i a k_i -place connective for some positive integer k_i): letters are wffs, and $F_i\alpha_1 \ldots \alpha_{k_i}$ is a wff if $\alpha_1, \ldots, \alpha_{k_i}$ are wffs. A rule of inference is an s-tuple of wffs; and a set of wffs T is closed under a rule of inference $\langle \beta_1, \ldots, \beta_{s-1}, \beta_s \rangle$ just in case $\gamma_s \epsilon T$ whenever $\gamma_1, \ldots, \gamma_{s-1}, \gamma_s$ result from $\beta_1, \ldots, \beta_{s-1}, \beta_s$, respectively, by a uniform substitution of wffs for letters, and $\gamma_1, \ldots, \gamma_{s-1} \epsilon T$.

 $\mathbf{P} = \langle T, A, R_1, \ldots, R_r \rangle$ is a sentential calculus if and only if A, the set of axioms of \mathbf{P} , is a set of wffs, R_1, \ldots, R_r are rules of inference, and T, the set of theorems of \mathbf{P} , is the least set containing A and closed under substitution and each of R_1, \ldots, R_r . (Where r = 0, T is simply the set of substitution instances of members of A.) For each such \mathbf{P} define an equivalence relation, \cong_P , on S_{\aleph_0} by letting $\alpha \cong_P \beta$ just in case replacement of zero or more occurrences of α by β in each wff in T (respectively, not in T) results in a wff in T (respectively, not in T). For $\alpha \in S \subset S_{\aleph_0}$, let $[\alpha] \cong_{P|S}$'s be the set of β 's in S such that $\alpha \cong_P \beta$ and let S/\cong_P be the set of $[\alpha] \cong_{P|S}$'s such that $\alpha \in S$.

 $\mathfrak{M} = \langle V, D, f_1, \ldots, f_n \rangle$ is a matrix if and only if V is a non-empty set, $D \subset V$, and each f_i is a k_i -ary operation in V. A function $h: S_{\aleph_0} \to V$ is a value function of \mathfrak{M} just in case $h(F_i \alpha_1 \ldots \alpha_{k_i}) = f_i(h(\alpha_1), \ldots, h(\alpha_{k_i}))$ for all $\alpha_1, \ldots, \alpha_{k_i} \in S_{\aleph_0}$, and α is an \mathfrak{M} -tautology just in case $h(\alpha) \in D$ for every value function h of \mathfrak{M} . We denote the set of \mathfrak{M} -tautologies by 'E(\mathfrak{M})'. Where $\mathfrak{M} = \langle V, D, f_1, \ldots, f_n \rangle$ and $\mathfrak{M}' = \langle V', D', f_1', \ldots, f_n' \rangle$ are matrices the matrix $\mathfrak{M} \times \mathfrak{M}' = \langle V \times V', D \times D', f_1^X, \ldots, f_n^X \rangle$, where $f_i^X(\langle v_1, v_1' \rangle, \ldots, \langle v_{k_i}, v_{k_i'} \rangle) = \langle f_i(v_1, \ldots, v_{k_i}), f_i'(v_1', \ldots, v_{k_i'}) \rangle$, is called the product of \mathfrak{M} and \mathfrak{M}' . Evidently (cf. [5]), E($\mathfrak{M} \times \mathfrak{M}'$) = E(\mathfrak{M}) \cap E(\mathfrak{M}').

The matrix $\mathfrak{M} = \langle V, D, f_1, \ldots, f_n \rangle$ is a *model* of the sentential calculus $\mathbf{P} = \langle T, A, R_1, \ldots, R_r \rangle$ if $T \subseteq \mathbf{E}(\mathfrak{M})$ and for each value function h of \mathfrak{M} and each rule $\langle \beta_1, \ldots, \beta_{s-1}, \beta_s \rangle$ of \mathbf{P} , if $h(\beta_1), \ldots, h(\beta_{s-1}) \in D$ then $h(\beta_s) \in D$. If \mathfrak{M} is a model of \mathbf{P} with $\mathbf{E}(\mathfrak{M}) = T$, we call \mathfrak{M} a *characteristic* matrix for \mathbf{P} .

For each set of letters L we let S_L be the set of wffs in which the only

363