Notre Dame Journal of Formal Logic Volume XIII, Number 3, July 1972 NDJFAM

AXIOMATIC, SEQUENZEN-KALKUL, AND SUBORDINATE PROOF VERSIONS OF S9

ARNOLD VANDER NAT

1.1 The System S9. In [8] the system S9 was presented with primitive connectives \sim , &, and \bowtie as S3 plus the axioms

- (a) $\sim p \lor ((\sim (p \And \sim p) \bowtie p) \lor (p \bowtie (p \bowtie p)))),$
- (b) $\sim p \lor ((p \bowtie p) \bowtie p),$
- (c) $(p \bowtie p) \bowtie \sim (\sim (p \bowtie p) \bowtie (p \bowtie p)),$

the rules being Substitution, Strict Detachment, and Adjunction.¹ A simpler formulation of S9 can be given, however, in that (b) is redundant and (a) and (c) can be simplified. If we abbreviate $\sim x \mapsto x$ by $\Box x$ and $\sim (x \& \sim y)$ by $x \supset y$, then in S3, $x \mapsto y$ is strictly equivalent (s.e.) to $\Box (x \supset y)$ and $x \mapsto x$ is s.e. to $\Box t$, where t is any tautology of classical two-valued logic, PC. Thus, in S3 the axioms (a), (b), and (c) are s.e. to

- (d) $\sim (p \bowtie \Box t) \supset (p \supset \Box p),$ (e) $p \supset (\Box t \bowtie p),$
- (f) $\Box t \mapsto \sim \Box \Box t$

respectively. Now (f) is derivable from $\sim \Box \Box t$ and (e), and (e) is derivable from $\sim \Box \Box t$ and (d). The latter is shown as follows. The formula $(\sim p \bowtie q) \&$ $(p \bowtie q) \bowtie \Box q$ is provable in S3, so that $\sim \Box \Box t \bowtie ((\sim p \bowtie \Box t) \supset \sim (p \bowtie \Box t))$ is provable in S3. Hence, by $\sim \Box \Box t$ and (d) we have $(\sim p \bowtie \Box t) \supset (p \supset \Box p)$. Substituting $\Box t \supset p$ for p and detaching $\sim (\Box t \supset p) \bowtie \Box t$, we have $(\Box t \supset p) \supset$ $(\Box t \bowtie p)$, which yields (e) by a two-valued tautology. Hence, in S3 (a), (b), and (c) are derivable from $\sim \Box \Box t$ and $\sim (p \bowtie \Box t) \supset (p \supset \Box p)$, and *vice versa*. A simpler formulation of S9 in \sim , &, and \bowtie is thus S3 plus

- $(g) \sim (\sim (p \bowtie p) \bowtie (p \bowtie p))$
- $(h) \sim (p \bowtie (p \bowtie p)) \supset (p \supset (\sim p \bowtie p)).$

1.2 It is desirable to present yet another formulation of S9: a Lemmon

Received December 13, 1969

^{1.} For a detailed discussion of S9 see [8].