Notre Dame Journal of Formal Logic Volume XIX, Number 2, April 1978 NDJFAM

A NOTE ON TURING MACHINE REGULARITY AND PRIMITIVE RECURSION

NICHOLAS J. de LILLO

1 Introduction The purpose of this paper is to present an explicit Turing machine Z which computes any function which is defined by means of primitive recursion from two given computable functions. The formulation of Z uses results of Davis [1] and Mal'cev [3], with the added feature that Z yields outputs in a standard form, such outputs usable as inputs in subsequent Turing machines which can be activated after Z has completed its computation. Such machines as Z are defined as *n*-regular, for a positive integer *n*. The course of a computation in Z follows along lines suggested by Davis [2], for a similar computation using abstract programs instead of Turing machines.

2 Preliminary concepts We will assume a general familiarity with [1], explicitly defining only those concepts which are absolutely necessary for the continuity of this discussion. A Turing machine¹ is any non-empty and finite set of quadruples, any one of which assumes the form (i) $q_i S_i S_k q_l$, or (ii) $q_i S_j R q_l$, or (iii) $q_i S_j L q_l$, where *i*, *j*, *k*, *l* are positive integers. The symbols q_i , q_l are elements of a finite set Q, called the *internal states* of the machine; the symbols S_i , S_k are elements of the set $A = \{1, B\}$ disjoint from Q and called the alphabet of the machine; the symbols L and R are distinct symbols not in $Q \cup A$. It is understood that no two distinct quadruples of a given Turing machine begin with the same first two symbols. The usual meanings are attached to the quadruples: (i) is the instruction which, when the state of the machine is q_i and the symbol S_i is being scanned, erases S_i and prints S_k in its place, the machine then moving to state q_l ; (ii) instructs the machine to move one square to the right and change to state q_l when the machine is in state q_i and scans a square with S_i printed there; (iii) is the instruction similar to (ii), except the machine moves one square to the left.

^{1.} Using the terminology of [1], this paper will deal only with *simple* Turing machines, but these results can easily be generalized to the case of relative computability.