289

Notre Dame Journal of Formal Logic
Volume XIX, Number 2, April 1978

NDJFAM
A NOTE ON TURING MACHINE REGULARITY
AND PRIMITIVE RECURSION
NICHOLAS J. de LILLO
1 Introduction The purpose of this paper is to present an explicit

Turing machine Z which computes any function which is defined by means
of primitive recursion from two given computable functions. The formula-
tion of Z uses results of Davis [1] and Mal’cev [3], with the added feature
that Z yields outputs in a standard form, such outputs usable as inputs in
subsequent Turing machines which can be activated after Z has completed
its computation. Such machines as Z are defined as n-regular, for a
positive integer n. The course of a computation in Z follows along lines
suggested by Davis (2], for a similar computation using abstract programs
instead of Turing machines.

2 Preliminary concepts We will assume a general familiarity with [1],
explicitly defining only those concepts which are absolutely necessary for
the continuity of this discussion. A Turing machine' is any non-empty and
finite set of quadruples, any one of which assumes the form (i) q;S;Sq1, or
(ii) ¢iS;Rq;, or (iii) ¢;S;Lq;, where i, j, k, I are positive integers. The
symbols ¢q;, q; are elements of a finite set @, called the iniernal states of
the machine; the symbols S;, S; are elements of the set A = {l,B} disjoint
from @ and called the alphabet of the machine; the symbols L and R are
distinct symbols not in @ UA. It is understood that no two distinct
quadruples of a given Turing machine begin with the same first two
symbols. The usual meanings are attached to the quadruples: (i) is the
instruction which, when the state of the machine is ¢; and the symbol S; is
being scanned, erases S; and prints S, in its place, the machine then moving
to state g;; (ii) instructs the machine to move one square to the right and
change to state ¢; when the machine is in state ¢; and scans a square with
S; printed there; (iii) is the instruction similar to (ii), except the machine
moves one square to the left.

1. Using the terminology of [1], this paper will deal only with simiple Turing machines, but these
results can easily be generalized to the case of relative computability.

Received December 18, 1974



