Notre Dame Journal of Formal Logic Volume XIX, Number 1, January 1978 NDJFAM

DEGREES OF PARTIAL FUNCTIONS

JAN BERGSTRA

In this paper we consider a new notion of relative recursion on partial functions, which allows for an easy definition of the recursive infimum of two functions.

1 Let U be the set of partial mappings: $\omega \to \{0, 1\}$. We write f(x) = * if f(x) is undefined. U will be the universum for our recursion theory. Computations are introduced using Kleene brackets [1]. So we have a relation

$$\{e\}^{\alpha}(\overrightarrow{m}) \cong n$$

where e, m_i , $n \in \omega$, $\alpha \in U$. A computation $\{e\}^{\alpha}(\vec{m})$ is undefined if either it never stops or it uses $\alpha(n)$ for an n s.t. $\alpha(n) = *$.

1.1 Definition α is recursive in $\beta(\alpha \leq \beta)$ if for some $e \in \omega$

$$\alpha \subseteq \lambda x \cdot \{e\}^{\beta}(x).$$

It is easy to see that \leq is a transitive relation on U. We write $\alpha \equiv \beta$ if $\alpha \leq \beta$ and $\beta \leq \alpha$. Of course \equiv is an equivalence relation. The equivalence classes are called degrees. The lowest degree, 0, is the degree of the partial recursive functions.

Motivation We see $\alpha \in U$ as an object containing information (concerning its arguments). If $\alpha \subseteq \beta$ then β contains at least as much information as α does. Hence we insist to have $\alpha \leq \beta$ in this case. A similar argument holds if $\alpha = \lambda x \{e\}^{\beta}(x)$ for some e. These two requirements generate \leq .

As the total functions are included in U, U/\equiv has cardinality 2^{\aleph_0} , cf. [2]. On the other hand some equivalence classes of \equiv do have cardinality 2^{\aleph_0} themselves. It is not difficult to find α which is not equivalent to any total function. Furthermore a straightforward spoiling construction shows that there are no minimal degrees in U. Some motivation for considering U lies in the following theorem.

1.2 Definition $1 - sc(\alpha)$ is the set of *total* functions recursive in α .

1.3 Theorem Let $V \subseteq \omega^{\omega}$ be countable and closed under recursion. Then for some $\alpha \in U V = 1 - sc(\alpha)$.

Received April 15, 1977

152