Notre Dame Journal of Formal Logic Volume XIX, Number 1, January 1978 NDJFAM

A NOTE ON THE DECOMPOSITION OF THEORIES WITH RESPECT TO AMALGAMATION, CONVEXITY, AND RELATED PROPERTIES

CHARLES PINTER

1 Introduction If T is any theory, it is well known that T_{\forall} , the universal part of T, can be uniquely represented as the intersection of irreducible components S_i ; and, corresponding to this representation, there is a decomposition of the class $\mathcal{M}(T)$ of models of T into subclasses $\mathcal{M}(T \cup S_i)$. [This decomposition generalizes, for example, the classification of fields according to their characteristic.] In this note it is made clear, first, under what conditions the classes $\mathcal{M}(T \cup S_i)$ are mutually disjoint. This result is then used to show that any theory T having the amalgamation property can be decomposed into theories T_i such that each T_i has the joint extension property as well as the amalgamation property, and the classes $\mathcal{M}(T_i)$ are mutually disjoint. Then, turning to convex theories, it is shown that there is a one-to-one correspondence between the core models of a convex theory T and the components of T_{\exists} , hence T can be decomposed (according to the components of T_{\exists}) into convex theories with a unique core model. Decomposition results with similar intent have been obtained by Fisher and Robinson in [1], and by Fisher, Simmons, and Wheeler in [2].

We assume, throughout, that \mathcal{L} is a countable, finitary, first-order language. A *theory* T is a consistent set of sentences of \mathcal{L} ; $\mathcal{M}(T)$ is the class of models of T and, if \mathfrak{A} is a structure of \mathcal{L} , Th(\mathfrak{A}) is the set of all the sentences which are true in \mathfrak{A} . \forall_1 will designate the set of universal formulas of \mathcal{L} , and \exists_1 the set of existential formulas. T_{\forall} designates the universal part of a theory T, and T_{\exists} the existential part of T. By an *irreducible ideal* of \forall_1 (respectively \exists_1), we mean a deductively closed set S of universal (respectively existential) sentences such that $\phi_{\forall}\psi \in S$ implies $\phi \in S$ or $\psi \in S$. A *component* of T_{\forall} (respectively T_{\exists}) is a minimal irreducible extension of T_{\forall} (respectively T_{\exists}).

2 Components and the conditional joint extension property Let T be a theory, let P be a component of T_{\forall} , and let $*P = \{\varepsilon \in \exists_1: \exists \varepsilon \notin P\}$. It is trivial to verify that *P is an irreducible ideal of \exists_1 , and that $T \cup *P$ is consistent. Furthermore, *P is maximal (among the ideals of \exists_1) with respect to being

Received March 3, 1977