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CRITICAL POINTS OF NORMAL FUNCTIONS. II

JOHN L. HICKMAN

Unless the contrary is made explicit, the notation and terminology of
this present note will follow that in [1]. Perhaps the main difference lies in
our concept of function; we are now more restrictive, and adopt the
convention that all functions mentioned have domain ON. In the results that
we are about to present,* the number 0 has the annoying habit of appearing
as a special case to be considered with a good deal of frequency. We cannot
eradicate this entirely, but can expedite matters somewhat by admitting 0
to the domain of the cofinality function cf, with the definition ‘‘cf(0) = 0’
(we do not, however, admit 0 to the class of regular ordinals). Thus we
have cf(@) <1 if and only if a =0 or @ =8 +1 for some B. By the prime
component representation of an ordinal a > 0, we mean the unique repre-
sentation a = po + p1 + . . . + ps, Where each p; is a prime component, and
P# = P for m < m.

Let X be a class. We shall often enumerate X as (x¢), where the
subscripts range over some ordinal (if X is a set) or over ON (if X is a
proper class); in each case the subscript range will be clear from the
context. Whenever such an enumeration is given, it will be assumed to be
increasing.

Definition 1 A proper class X = (x;) is called ‘‘appropriate’’ if the
following conditions are satisfied.

(1) If % # 0, then %, = w” for some y such that cf(w”) = w:
(2) For each &, %z, - % = w” for some y such that cf @) < w.
(3) For each )€ LIM*, x, = limgc)xg.

We wish to show that for any class X, X = CR; for some normal
function f if and only if X is appropriate.

*The work contained in this paper was done whilst the author was a Research
Fellow at the Australian National University.
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