Notre Dame Journal of Formal Logic Volume XVIII, Number 4, October 1977 NDJFAM

NECESSITAS CONSEQUENTIS IN A SINGLETON POSSIBLE WORLD

ROBERT W. MURUNGI

In [1], M. J. Cresswell adopts a Kripke semantics according to which "a one-world model is a model in which Lp and p have the same truth-value and in which CpLp is true." In [5], I proved that not only is the system M'(T'), with CpLp as a thesis, formally consistent, but it does not collapse into classical sentential calculus. Now I wish to show that there is a sense of "possible world," closely allied to that of Kripke, in which Lp and p do not necessarily have the same truth-value and in which CpLp is contingent.

In Kripke [3], R is idle in a normal model structure $\langle G, K, R \rangle$ where $K = \{G\}$. That is, R fails to distinguish between Kripke [3] and Kripke [2]. Now, in Kripke [2], a possible world is a truth-value assignment to every atomic subformula of a wff α . We depart from Kripke in this—that, for us, a possible world is not a truth-value assignment to atomic variables. It is a set of such assignments. Following Massey [4], we understand by a plenary set Ω a set of partial and complete truth-tables for a wff α such that any truth-value assignment Σ to the variables of α is represented in some member of Ω .

We let a member of Ω represent a possible world. That is, we let a partial or complete truth-table for a wff α represent a set of truth-value assignments for a wff α . The semantics for 'L' are then stipulated, not across possible worlds but within them as in Massey [4].

Now, consider the following plenary set of truth-tables for CpLp.