Notre Dame Journal of Formal Logic Volume XVIII, Number 4, October 1977 NDJFAM

ON RAMSEY'S THEOREM AND THE AXIOM OF CHOICE

GABRIELE LOLLI

It is known that Ramsey's theorem cannot be proved in ZF without the axiom of choice (see, e.g., Kleinberg [2]) but there does not seem to exist in the literature, or at least be widely recognized, a clear cut statement of the exact relationship between this combinatorial result and the principle of choice (in Drake [1], p. 72, the problem is mentioned but only a partial answer is given). The aim of this note* is to write down a proof of the

Proposition Ramsey's theorem is equivalent to the axiom of choice for countable families of finite sets.

For a set X, let $[X]^2$ be the set of unordered pairs from X; if $f: [X]^2 \to 2$ is a partition of $[X]^2$ into two disjoint sets, a set $Y \subseteq X$ is said to be homogeneous for f if $f \upharpoonright [Y]^2$ is constant. Then by Ramsey's theorem we mean the statement

(**RT**) Any partition $f: [X]^2 \rightarrow 2$ of an infinite set X possesses an infinite homogeneous set

which is the crucial step of Ramsey [3].

We abbreviate with (CCF) the axiom of choice for countable families of non-empty finite sets; (CCF) is equivalent in ZF to König's lemma

(KL) Any infinite finitary tree has an infinite branch

and also $(KL) \Rightarrow (RT)$ (see, e.g., Drake [1], p. 203). It remains to be shown that $(RT) \Rightarrow (KL)$; we prove it in a roundabout way through the following weak form of compactness for propositional logic

(CPL) Let S be a countable set of propositional sentences over an infinite set of propositional letters; then S has a model iff every finite subset of S has a model.

^{*}The author is associated to Consiglio Nazionale delle Recerche, GNSAGA, Section 5.