Notre Dame Journal of Formal Logic Volume XVIII, Number 3, July 1977 NDJFAM

SOME POST-COMPLETE EXTENSIONS OF S2 AND S3

ROBERT V. KOHN

We shall take M, v, and \neg as primitive connectives. Let \mathcal{L} be the set of all wffs with these connectives. If α , $\beta \in \mathcal{L}$, we shall write $\alpha \prec \beta$ for $\neg M \neg (\neg \alpha \lor \beta)$, and $\alpha \equiv \beta$ for $\neg [\neg (\alpha \prec \beta) \lor \neg (\beta \prec \alpha)]$. We let **f** and **t** denote the wffs p $\land \exists p \lor p$, respectively. If $\alpha \in \mathcal{L}$, we denote by $\mathcal{L}[\alpha]$ the smallest subset of \mathcal{L} containing α and closed under the connectives M, v, and \neg . A modal logic L is a proper subset of \mathcal{L} which is closed under the rules of uniform substitution and *modus ponens*, and contains all tautologies. If L_1 and L_2 are modal logics, then L_1 is an *extension* of L_2 iff $L_2 \subseteq L_1$. A modal logic is called *Post-complete* if it has no proper extensions. Let p(L) be the number of Post-complete extensions of a modal logic L. Several papers have considered the problem of evaluating p(L), for various modal logics L [1, 2, 3]. It has long been known that $p(S2) \ge \aleph_0$. Segerberg claims in [3] to prove that $p(S3) = 2^{\aleph_0}$: his proof is incorrect, but it may easily be modified to show that $p(S2) = 2^{\aleph_0}$ and that $p(S3) \ge \aleph_0$. Whether or not $p(S3) = \aleph_0$ remains an open question, to which this author believes the answer is probably affirmative. Most of the work on Post-complete systems uses the classical results of Lindenbaum and Tarski [4], and is therefore highly non-constructive. In fact, the only explicitly described Post-complete extensions of S3 in the literature known to the author are the systems S9 of [5] and F and Tr of [3]. This paper applies a variant of a theorem of Belnap and McCall [6] to construct some Post-complete extensions of the Lewis systems S2 and S3.

Let $\mathfrak{M} = \langle B, D, * \rangle$ be any matrix for a modal logic, where B is a Boolean algebra, D a set of distinguished elements, and * interprets the possibility operator. Each element $\alpha \in \mathcal{L}[\mathbf{f}]$ determines an element $V_{\mathfrak{M}}(\alpha)$ of B, when interpreted in \mathfrak{M} in the usual way.

Definition The matrix \mathfrak{M} is a functionally complete matrix (FCM) if:

(i) for any $x \in B$, there is an $\alpha \in \mathcal{L}[\mathbf{f}]$ such that $V_{\mathfrak{M}}(\alpha) = x$.

and

(ii) for every $x \in B$, either $x \in D$ or $-x \in D$.

Received July 26, 1974