SOME POST-COMPLETE EXTENSIONS OF S2 AND S3

ROBERT V. KOHN

We shall take M, \vee, and \urcorner as primitive connectives. Let \mathcal{K} be the set of all wffs with these connectives. If $\alpha, \beta \in \mathcal{L}$, we shall write $\alpha 弓 \beta$ for $\neg M\urcorner(\neg \alpha \vee \beta)$, and $\alpha \equiv \beta$ for $\neg[\neg(\alpha \rightharpoondown \beta) \vee \neg(\beta \rightharpoondown \alpha)]$. We let \mathbf{f} and \mathbf{t} denote the wffs $p \wedge\urcorner p$ and $\urcorner p \vee p$, respectively. If $\alpha \in \mathcal{L}$, we denote by $\mathcal{L}[\alpha]$ the smallest subset of \mathcal{L} containing α and closed under the connectives M, v, and $ᄀ$. A modal logic L is a proper subset of \mathcal{K} which is closed under the rules of uniform substitution and modus ponens, and contains all tautologies. If L_{1} and L_{2} are modal logics, then L_{1} is an extension of L_{2} iff $L_{2} \subseteq L_{1}$. A modal logic is called Post-complete if it has no proper extensions. Let $p(L)$ be the number of Post-complete extensions of a modal logic L. Several papers have considered the problem of evaluating $p(L)$, for various modal logics L $[1,2,3]$. It has long been known that $p(S 2) \geqslant \aleph_{0}$. Segerberg claims in [3] to prove that $p(S 3)=2^{\aleph_{0}}$: his proof is incorrect, but it may easily be modified to show that $p(S 2)=2^{\aleph_{0}}$ and that $p(S 3) \geqslant \aleph_{0}$. Whether or not $p(S 3)=\aleph_{0}$ remains an open question, to which this author believes the answer is probably affirmative. Most of the work on Post-complete systems uses the classical results of Lindenbaum and Tarski [4], and is therefore highly non-constructive. In fact, the only explicitly described Post-complete extensions of S3 in the literature known to the author are the systems S9 of [5] and F and Tr of [3]. This paper applies a variant of a theorem of Belnap and McCall [6] to construct some Post-complete extensions of the Lewis systems S2 and S3.

Let $\mathfrak{M}=\langle B, D, *\rangle$ be any matrix for a modal logic, where B is a Boolean algebra, D a set of distinguished elements, and * interprets the possibility operator. Each element $\alpha \in \mathcal{L}[\mathbf{f}]$ determines an element $V_{\mathfrak{m}}(\alpha)$ of B, when interpreted in \mathfrak{M} in the usual way.

Definition The matrix \mathfrak{M} is a functionally complete matrix (FCM) if:
(i) for any $x \in B$, there is an $\alpha \in \mathcal{L}[\mathbf{f}]$ such that $V_{\mathfrak{m}}(\alpha)=x$. and
(ii) for every $x \in B$, either $x \in D$ or $-x \in D$.

