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THE LOGIC OF CLOSED CATEGORIES

MANFRED E. SZABO

0 Intvoduction In this paper,* we continue our study, initiated in [4, 5, 10]
and reformulated in [11], of the connection between syntactic and semantic
criteria for the ‘‘equivalence’ and ‘‘normality’’ of formal proofs in
intuitionist Gentzen systems. As in [11], we interpret proofs as morphisms
in free closed categories. But by no longer requiring that these categories
are ‘‘cartesian’’, we obtain a coarser equivalence relation than that in [11],
still admitting a ‘‘reducibility relation’> with the Church-Rosser property.
As a by-product of this analysis, we are able to obtain necessary and
sufficient conditions for the commutativity of diagrams in free closed
categories.

1 Closed categories The theory of ‘‘closed categories’ serves as a
generalization for categories such as sets, R-modules over a commutative
ring R, compactly generated Hausdorff spaces, small categories, etc., in
which any two objects have a ‘‘tensor product’’ and in which the ‘‘hom-
sets’’ themselves are again sets, R-modules, compactly generated Haus-
dorff spaces, small categories, etc. Formally, a closed category is a list
(®, A, D, 1, a, r, 0, Q) consisting of the following data:

(i) a category K;

(ii) a bifunctor A: & x & — K (called ““tensor product’’);

(iii) a bifunctor D: 8P x & — & (called ‘“internal hom’’);

(iv) a distinguished object I (called the ‘‘unit’’ of the tensor product);
(v) coherent natural isomorphisms a, A, and ¢ with components

a(A, B, C): Ar(BAC) — (AnB)AC,
AMA):IAA — A,

and
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