Notre Dame Journal of Formal Logic Volume XVIII, Number 3, July 1977 NDJFAM

WHEN DO *CONTINUOUS EXTENSIONS EXIST?

ROBERT WARREN BUTTON

In non-standard analysis we frequently need a non-standard extension of some standard function $f: X \to Y$, that is, an internal function $g: *X \to *Y$ other than *f such that $g|_X = f$. Often X and Y are topological spaces and we want g to be *continuous, so that for each *open $U \subseteq *Y$, $g^{-1}(U) \subseteq *X$ is *open. H. Gonshor showed in [3] that if X is normal, then any function $f: x \to IR$ has a *continuous extension. Obviously, the problem of which pairs (X, Y) have this property has some uninteresting solutions: (X, X) is such a pair where X is a discrete space. However, by introducing additional conditions on X and Y we can produce an interesting class of such pairs. First we remind the reader of the following definitions.

Definition 1 A topological space X is said to be Urysohn (or functionally Hausdorff) iff for any two points x, $y \in X$ there is a continuous function $g: X \to \mathbb{R}$ such that g(x) = 1 and g(y) = 0.

Definition 2 A topological space Y is said to be pathwise connected iff for any two points x, $y \in Y$ there is a continuous function $h: I \to Y$ such that h(1) = x and h(0) = y.

It is evident that any space Y is pathwise connected iff for any two points x, $y \in Y$ there is a continuous function h: $\mathbb{IR} \to Y$ such that h(1) = x and h(0) = y.

Theorem 1 Let X be a Urysohn space and let Y be a pathwise connected space in a model \mathfrak{M} . Then for any enlargement $*\mathfrak{M}$ of \mathfrak{M} , each function $f: X \to Y$ has a *continuous extension $g: *X \to *Y$. Moreover, if X is not a Urysohn space, then there is a function $f_1: X \to \mathbb{R}$ with no *continuous extension, and if Y is not pathwise connected, then there is a function $f_2: \mathbb{R} \to Y$ with no *continuous extension.

Proof: Let X be a Urysohn space, let Y be a pathwise connected space and let $f: X \to Y$ be an arbitrary function. We shall show that the binary relation R defined by: $\langle x, y \rangle Rg$ iff $g: X \to Y$ is continuous and g(x) = y is concurrent on $\{\langle x, f(x) \rangle : x \in X\}$.

Received April 9, 1975

406