Notre Dame Journal of Formal Logic Volume XVIII, Number 2, April 1977 NDJFAM

BINARY CONSISTENT CHOICE ON TRIPLES

ROBERT H. COWEN

1 Introduction Łoś and Ryll-Nardzewski introduced various principles of "consistent" choice with respect to symmetrical relations in [4], [5] and then showed many were equivalent to **P.I.**, the prime ideal theorem for Boolean algebras.¹ In particular, they showed that even for binary relations, consistent choice from finite sets of cardinality $\leq n$ equals **P.I.**, for $n = 4, 5, 6, \ldots$ Here we extend this result to include n = 3.

2 Let A be a collection of sets and R a binary symmetric relation. A set t is a *choice set* for A if $t \stackrel{\frown}{\cap} a = 1$, for all $a \in A$; if, in addition, $\{x, y\} \in R$ for all x, y in t with $x \neq y$, t is an *R*-consistent choice set for A. The collection of all choice sets for A will be denoted by c(A), while the collection of all *R*-consistent choice sets is $c_R(A)$. In [4], [5], the following theorem was proved equivalent to **P.I.**

Theorem 1 Let A be a collection of finite sets and R a binary symmetric relation, and suppose that for any finite $A_0 \subseteq A$, $c_R(A_0) \neq \emptyset$. Then $c_R(A) \neq \emptyset$.

Let F_n denote the statement of Theorem 1 if the sets of A are further restricted to have cardinality $\leq n$; then, as mentioned above, Loś and Ryll-Nardzewski even showed $F_n \leftrightarrow \mathsf{P.I.}$, $n = 4, 5, 6, \ldots$ We will prove $F_3 \leftrightarrow \mathsf{P.I.}$ It is, of course, enough to show $F_3 \rightarrow \mathsf{P.I.}$

Let $\beta = \langle B, \wedge, \vee, \sim, 0, 1 \rangle$ be a Boolean algebra. For any $K \subseteq B$, let $\tilde{K} = \{\{b, \sim b\} | b \in K\}$. If $K \subseteq B$ is a subalgebra, any prime ideal of K is an element of $c(\tilde{K})$. Moreover, any ideal of K which belongs to $c(\tilde{K})$ is a prime ideal of K. Let pr(K) denote the set of prime ideals of K and let $\Sigma(B) = \{K \subseteq B | K \text{ is a finite subalgebra of } \beta\}$. It is easy to see that any $I \in c(\tilde{B})$ will be a prime ideal of β if $I \cap K$ is an ideal of K, for all $K \in \Sigma(B)$.

Theorem 2 $F_3 \rightarrow \mathsf{P.I.}$

Proof: Let $\beta = \langle B, \wedge, \vee, \sim, 0, 1 \rangle$ be a Boolean algebra. For each finite

310

^{1.} Equivalent here means in **ZF** without the axiom of choice.