Notre Dame Journal of Formal Logic Volume XVIII, Number 2, April 1977 NDJFAM

INFINITE SERIES OF REGRESSIVE ISOLS UNDER ADDITION

JUDITH L. GERSTING

1 Introduction Let E denote the collection of all non-negative integers (numbers), Λ the collection of all isols, Λ_R the collection of all regressive isols, and Λ_{TR} the collection of T-regressive isols. (T-regressive isols were introduced in [4].) We recall the definition of an infinite series of isols, $\sum_{T} a_n$, where $T \in \Lambda_R - E$ and $a_n: E \to E$:

$$\sum_{\mathsf{T}} a_n = \operatorname{Req} \sum_{0}^{\infty} j(t_n, \nu(a_n))$$

where $j(x, y): E^2 \to E$ is a one-to-one recursive function, t_n is any regressive function ranging over a set in T, and for any number n, $\nu(n) = \{x \mid x < n\}$. Infinite series of isols were introduced by J. C. E. Dekker in [2], where it was shown that $\sum_{T} a_n \in \Lambda$. In [1] J. Barback studied infinite series of the form $\sum_{T} a_n$ where $T \leq a_{n-1}$. The relation $T \leq a_{n-1}$ means that for any regressive function t_n ranging over a set in T, the mapping $t_n \to a_{n-1}$ has a partial recursive extension. Professor Barback proved that for $T \leq a_{n-1}$, $\sum_{T} a_n \in \Lambda_R$. Because

$$a_n \text{ recursive } \Rightarrow \mathsf{T} \leq * a_n \Rightarrow \mathsf{T} \leq * a_{n-1}$$

but not conversely, there are several conditions of varying strength on the function a_n such that $\sum_{\mathsf{T}} a_n \in \Lambda_{\mathsf{R}}$. It is also known [5] that $\mathsf{T} \leq a_{n-1}$ is not a necessary condition for $\sum_{\mathsf{T}} a_n$ to be a regressive isol.

The following questions were posed by Professor Barback. Let $T \in \Lambda_R$ - E and let $a_n, b_n: E \to E$ be functions such that $\sum_T a_n, \sum_T b_n \in \Lambda_R$:

(1) Does $\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n \in \Lambda_{\mathsf{R}}$? (2) Does $\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n = \sum_{\mathsf{T}} (a_n + b_n)$?

The present paper provides some partial answers to these questions.

2 Some results We will assume throughout that $T \in \Lambda_R - E$ and that $a_n, b_n: E \to E$ with $\sum_T a_n, \sum_T b_n \in \Lambda_R$.

Theorem 1 Let α and β be disjoint recursive sets with $\alpha \cup \beta = E$ such that

Received November 7, 1975