Notre Dame Journal of Formal Logic Volume XVIII, Number 2, April 1977 NDJFAM

TWO NOTES ON RECURSIVELY ENUMERABLE VECTOR SPACES

RICHARD GUHL

1 A Characterization of Recursive Spaces We retain the terminology of [4] of which this note is a continuation.

Definition Let $\sigma_0 = \sigma$ - (0). Let $n \subseteq \overline{U}_0$. Define m(n) to be the (largest prime divisor of n + 1).

Obviously:

(i) m(n) is a partial recursive function,

- (ii) $m(V_0)$ infinite iff dim V infinite,
- (iii) m respects inclusion on sets,
- (iv) m maps (proper) subspaces to (proper) subsets,

(v) for $\beta \subset \overline{U}_0$, m(x) 1 - 1 on β implies β is a repère.

Definition Let V be a subspace of \overline{U} . γ is a cobasis for V if γ is a basis for a complementary space for V. η_V is the canonical cobasis for V if η_V is a cobasis for V and $\eta_V \subset \eta$.

Remark The canonical cobasis for a space V is defined to be the set γ such that $\gamma = (e_i \text{ in } \eta | e_i \text{ is not in } (L(e_i) j \le i) + V).$

Proposition F The canonical cobasis for a recursive space is recursive.

Proof: Let f(i) list the canonical cobasis in increasing order. If f is a finite function, then its range is recursive. Otherwise f is a recursive function by the Corollary to Proposition C.

Proposition G For any space V, $e_n \in m(V_0)$ iff e_n is not in the canonical cobasis for V.

Proof: It suffices to show that

(19) $e_n \in \mathfrak{m}(V_0)$ iff $e_n \in (L(e_i) \ i < n) + V)$.

Assume the left hand side. Then there is an element e in V such that:

 $e = r_0 e_0 + \ldots + r_n e_n$, where $r_n \neq 0$.

Received February 28, 1975