INCOMPLETE TRANSLATIONS OF COMPLETE LOGICS

STEWART SHAPIRO

Let J and K be sets of (interpreted) logical primitives and let LJ and LK be languages based on J and K respectively, but having a common set of variables and non-logical constants. Let $\mathcal{L}J$ be a logic on LJ. Suppose t is a function which carries formulas of LJ into logically equivalent formulas of LK. It has been known since at least 1958 [6] that the completeness of the logic on LK ($\mathcal{L}K$), resulting from the translation (by t) of $\mathcal{L}J$ is not assured by the completeness of $\mathcal{L}J$.

This result may not be widely known; in 1972 Crossley [2] made a mistake by overlooking it. Crossley constructed a logic, here called $\mathcal{L}[\neg, \&, \exists]$, by translating a logic known to be complete, here called $\mathcal{L}[\neg, \&, \exists]$, by translating a logic known to be complete, but it is not. Similar examples may have motivated William Frank's recent article [3] in this *Journal* concerning the reasons why some translations do not preserve completeness. Unfortunately, there are two errors in the latter; it is the purpose of this article to set them straight. Frank's main theorem reads as follows:

If T(A) is the closure of a formal system in a language \mathcal{L} , with axioms $A1, \ldots, AN$; and rules $R1, \ldots, RM$ and t a rule of translation from \mathcal{L} to \mathcal{L}' , then T', the closure of $t(A1), \ldots, t(AN)$, $t(R1), \ldots, t(RM)$, is equal to t(T(A)).

In other words, the only theorems in \mathcal{L}' are translations of theorems in \mathcal{L} .

Let \mathcal{L} have 3 sentences: a, b, and c; one axiom: a; and one rule: b/c; so only one theorem: a. Let \mathcal{L}' have two sentences: A, B. Let $\mathbf{t}(a) = A$, $\mathbf{t}(b) = A$, $\mathbf{t}(c) = B$. \mathcal{L}' will then have two theorems: A, B because $\mathbf{t}(a) = A$ is an axiom and $\mathbf{t}(b)/\mathbf{t}(c) = A/B$ is a rule. But B is not the translation of a theorem in \mathcal{L} . The problem is that the translation of a non-rule (a/b) can become a rule if the translation is not 1-1.

^{1.} Typographical errors in axiom 5 of [2], p. 19, are assumed to be corrected.

^{2.} For example, some instances of $A \& A \rightarrow A$ are not provable (see below).