Notre Dame Journal of Formal Logic
Volume XVIII, Number 2, April 1977
NDJFAM

INCOMPLETE TRANSLATIONS OF COMPLETE LOGICS

STEWART SHAPIRO

Let J and K be sets of (interpreted) logical primitives and let LJ and LK be languages based on J and K respectively, but having a common set of variables and non-logical constants. Let $\mathcal{L} J$ be a logic on LJ. Suppose t is a function which carries formulas of $L J$ into logically equivalent formulas of LK. It has been known since at least 1958 [6] that the completeness of the logic on LK ($£ K$), resulting from the translation (by \mathbf{t}) of $\mathcal{K} J$ is not assured by the completeness of $£ J$.

This result may not be widely known; in 1972 Crossley [2] made a mistake by overlooking it. Crossley constructed a logic, here called $\mathcal{L}[7, \&, \exists]$, by translating a logic known to be complete, ${ }^{1}$ here called $\mathcal{L}[\cdot, \rightarrow, \forall]$. Crossley thought that $\mathcal{L}[7, \&, \exists]$ is complete, but it is not. ${ }^{2}$ Similar examples may have motivated William Frank's recent article [3] in this Journal concerning the reasons why some translations do not preserve completeness. Unfortunately, there are two errors in the latter; it is the purpose of this article to set them straight. Frank's main theorem reads as follows:

> If $\mathrm{T}(A)$ is the closure of a formal system in a language $\mathcal{\&}$, with axioms $\mathrm{A} 1, \ldots$., $\mathrm{A} N$; and rules $\mathrm{R} 1, \ldots ., \mathrm{RM}$ and t a rule of translation from $\&$ to \mathcal{L}^{\prime}, then T^{\prime}, the closure of $\mathrm{t}(\mathrm{A} 1), \ldots, \mathrm{t}(\mathrm{AN})$, $\mathrm{t}(\mathrm{R} 1), \ldots, \mathrm{t}(\mathrm{R} M)$, is equal to $\mathrm{t}(\mathrm{T}(A))$.

In other words, the only theorems in \mathcal{L}^{\prime} are translations of theorems in \mathcal{L}.
Let \mathfrak{L} have 3 sentences: a, b, and c; one axiom: a; and one rule: b / c; so only one theorem: a. Let \AA^{\prime} have two sentences: A, B. Let $\mathbf{t}(a)=A$, $\mathbf{t}(b)=A, \mathbf{t}(c)=B . \quad \mathcal{L}^{\prime}$ will then have two theorems: A, B because $\mathbf{t}(a)=A$ is an axiom and $\mathbf{t}(b) / \mathbf{t}(c)=A / B$ is a rule. But B is not the translation of a theorem in \mathcal{L}. The problem is that the translation of a non-rule (a / b) can become a rule if the translation is not 1-1.

[^0]
[^0]: 1. Typographical errors in axiom 5 of [2], p. 19, are assumed to be corrected.
 2. For example, some instances of $A \& A \rightarrow A$ are not provable (see below).
