Notre Dame Journal of Formal Logic Volume XVIII, Number 1, January 1977 NDJFAM

NEXT ${ }^{p}$ ADMISSIBLE SETS ARE OF COFINALITY ω

JUDY GREEN

The first and most direct generalization of the Barwise compactness theorem to the uncountable case was the cofinality ω compactness theorem of Barwise and Karp [1], [2]-a power set admissible set which can be written as a union of countably many of its elements is Σ_{1} (in the graph of the power set) compact. Thus, in order to directly generalize the many situations in which the Barwise compactness theorem is applied to a next admissible set, we need to know that all next power set admissible sets can be written as appropriate countable unions. In this paper* we show, using elementary methods, that they can. A modification of the proof of Theorem 5.3 of [1] can also be used but involves higher order predicates.

We assume familiarity with the notion of power set admissibility, presented for example in [2], and the fact that any power set admissible set can be written as a $\vee(\kappa)$. We also will use the obvious fact that there are only countably many formulas which are Δ_{0} in the graph of the power set and abuse notation slightly by calling these Δ_{0} in p^{p} formulas. For each cardinal λ we let $\beth_{0}(\lambda)=\lambda, \beth_{n+1}(\lambda)=2^{\beth_{n}(\lambda)}$, and $\beth_{\omega}(\lambda)=\bigcup_{n \in \omega} \beth_{n}(\lambda)$.
Theorem Every next power set admissible set is of cofinality ω.
Proof: Suppose $V(\kappa)$ is the smallest power set admissible set containing the set A and $\kappa_{0}=\beth_{\omega}(\rho)$ where ρ is the cardinality of the rank of A. Clearly $A \in \vee(\kappa)$ and $\vee(\kappa) \boldsymbol{\rho}$ admissible implies $\kappa_{0}<\kappa$. Starting with κ_{0} we construct a sequence of cardinals, each of cofinality ω, such that for each $n, \kappa_{n-1}<$ $\kappa_{n} \leqslant \kappa$. If at any time we find $\kappa_{n}=\kappa$ we are done so we may assume $\kappa_{0}<\kappa_{1}<\ldots<\kappa_{n}<\kappa$ and for $j \leqslant n, \kappa_{j}=\bigcup_{m \in \omega} \kappa_{j, m}$. Since we will eventually want to show that $\mathrm{V}\left(\mathrm{U}_{\kappa_{n}}\right)$ is \boldsymbol{p} admissible (and hence $\kappa=\mathrm{U}_{\kappa_{n}}$) we want to construct the sequence to satisfy:
if Q is any $k+2$ place Δ_{0} in \mathcal{P} formula and $a, b_{1}, \ldots, b_{k} \in \vee\left(\mathrm{U}_{\kappa_{n}}\right)$ then $\forall x \in a \exists y \in \vee\left(\cup_{\kappa_{n}}\right) Q\left(x, y, b_{1}, \ldots, b_{k}\right)$ implies there is an $n \in \omega$ such that $\forall x \in a \exists y \in \vee\left(\kappa_{n}\right) Q\left(x, y, b_{1}, \ldots, b_{k}\right)$.

[^0]
[^0]: *Partially supported by the Rutgers University Research Council.

