A PROOF OF SOBOCIŃSKI'S CONJECTURE CONCERNING A CERTAIN SET OF LATTICE-THEORETICAL FORMULAS

THOMAS A. SUDKAMP

In [1], J. Ričan has proven that any algebraic system

$\mathfrak{A} = \langle A, \cup, \cap \rangle$

where \cup and \cap are two binary operations defined on the carrier set A, which satisfies the following two postulates

$$A1 \quad [abc]: a, b, c \in A : \supset (a \cap b) \cup (a \cap c) = ((c \cap a) \cup b) \cap a$$

and

$$A2 \quad [abc]: a, b, c \in A : \supset a = (c \cup (b \cup a)) \cap a$$

is a modular lattice. In [2] (cf. pp. 311-312, Remark I; pp. 313-314, section 2.2; and p. 315, section 5, Remark II), B. Sobociński has proven that if in Ričan's postulate-system we substitute A2 by

B1
$$[ab]: a, b \in A :\supset a = (b \cup a) \cap a$$

then the resulting system $\{AI; BI\}$ satisfies the conditions of a modular lattice with the probable exception, he conjectures, that the associative laws for \cup and \cap fail to hold.

In this note I shall prove this conjecture using the following algebraic table

	U	0	α	β	γ	δ	1	\cap	0	α	β	γ	δ	1
	0	0	α	β	γ	δ	1	0	0	0	0	0	0	0
		α						α	0	α	α	0	0	α
	β	β	β	β	γ	δ	1	β	0	α	β	β	β	β
		Y						γ	0	0	β	γ	β	γ
	δ	δ	1	δ	1	δ	1				β			
	1	1	1	1	1	1	1	1	0	α	β	γ	δ	1

which verifies the axioms A1 and B1, but falsifies A2,

Received April 15, 1976