Notre Dame Journal of Formal Logic Volume XVII, Number 3, July 1976 NDJFAM

ALTERNATIVE NOTATIONS FOR *PRINCIPIA MATHEMATICA* DESCRIPTION THEORY: POSSIBLE MODIFICATIONS

JORDAN HOWARD SOBEL

1 The following are formulas by clauses (1)-(7), pp. 64-65, of a recent paper:¹

 $[1yH^{1}y]I^{2}x1yH^{1}y$ $[1yJ^{1}y] [1xH^{1}x]I^{2}1yJ^{1}y1xH^{1}x$ $\land x[1yH^{1}y]I^{2}x1yH^{1}y$ $[1yH^{1}y] \land xI^{2}x1yH^{1}y$

But the following are *not* formulas by these clauses:

 $\begin{bmatrix} 1xH^{1}x \end{bmatrix}I^{2}x1xH^{1}x \\ \begin{bmatrix} 1xJ^{1}x \end{bmatrix} \begin{bmatrix} 1xH^{1}x \end{bmatrix}I^{2}1xJ^{1}x1xH^{1}x \\ \wedge x[1xH^{1}x]I^{2}x1xH^{1}x \\ \begin{bmatrix} 1xH^{1}x \end{bmatrix} \wedge xI^{2}x1xH^{1}x \end{bmatrix}$

A connected point is that, by translation rules $\overline{T}/1$ and $1/\overline{T}$, not only is ϕ' a translation of ϕ by $1/\overline{T}$ if and only if ϕ is a translation of ϕ' by $\overline{T}/1$, but each 1-formula has a unique 1-free \overline{T} -translation and vice versa.

Modifications to formation and translation rules are possible, and are given below, that secure as formulas all of the above strings (which may seem a gain) while trading the *unique*-translation feature for a *multiple*-translation feature (which may seem a loss).

2 Replace clause (7) by the following clause (7'):

(a') An expression $\Im \alpha \phi$, α a variable and ϕ a formula or pseudo-formula, is an \Im -description.

(b') An expression ϕ is a *pseudo-term* (*pseudo-formula*) just in case a term (formula) ϕ' is like ϕ except for having, in place of all occurrences in ϕ of one or more **1**-descriptions, occurrences of variables not in ϕ . A term (formula) related to a pseudo-term (pseudo-formula) ϕ in this manner is an *associated term* (formula) of ϕ .

(c') An occurrence of a variable α is bound in a term or formula π just in case it stands within an occurrence in π of an expression χ such that (i) either χ is $\wedge \alpha \phi$, $\vee \alpha \phi$, $\neg \alpha \phi$, or $\overline{T} \alpha \phi \psi$, or χ is $[\mathbf{1} \alpha \phi] \psi$ and the occurrence of

476