Notre Dame Journal of Formal Logic Volume XVII, Number 3, July 1976 NDJFAM

ALTERNATIVE NOTATIONS FOR PRINCIPIA MATHEMATICA DESCRIPTION THEORY: POSSIBLE MODIFICATIONS

JORDAN HOWARD SOBEL

1 The following are formulas by clauses (1)-(7), pp. 64-65, of a recent paper: ${ }^{1}$

$$
\begin{aligned}
& \left.\left[7 y \mathrm{H}^{1} y\right] \mathrm{I}^{2} x\right) y \mathrm{H}^{1} y \\
& \left.\left[१ y \mathrm{~J}^{1} y\right]\left[१ x \mathrm{H}^{1} x\right] \mathrm{I}^{2}\right\urcorner y \mathrm{~J}^{1} y \mathbf{\imath} x \mathrm{H}^{1} x \\
& \left.\wedge x\left[1 y \mathrm{H}^{1} y\right] \mathrm{I}^{2} x\right) y \mathrm{H}^{1} y \\
& {\left[1 y \mathrm{H}^{1} y\right] \wedge x \mathrm{I}^{2} x \boldsymbol{\imath} y \mathrm{H}^{1} y}
\end{aligned}
$$

But the following are not formulas by these clauses:

$$
\begin{aligned}
& {\left[1 x \mathrm{H}^{1} x\right] \mathrm{I}^{2} x \geqslant x \mathrm{H}^{1} x} \\
& \left.\left[7 x \mathrm{~J}^{1} x\right]\left[\mathbf{1} x \mathrm{H}^{1} x\right] \mathrm{I}^{2}\right\} x \mathrm{~J}^{1} x \backslash x \mathrm{H}^{1} x \\
& \wedge x\left[\mathbf{1} x \mathrm{H}^{1} x\right] \mathrm{I}^{2} x \mathbf{1} x \mathrm{H}^{1} x \\
& \left.\left[1 x \mathrm{H}^{1} x\right] \wedge x \mathrm{I}^{2} x\right\urcorner x \mathrm{H}^{1} x
\end{aligned}
$$

A connected point is that, by translation rules $\overline{\mathbf{T}} / 1$ and $1 / \overline{\mathbf{T}}$, not only is ϕ^{\prime} a translation of ϕ by $1 / \mathbf{T}$ if and only if ϕ is a translation of ϕ^{\prime} by $\overline{\mathbf{T}} / \mathbf{1}$, but each 1-formula has a unique 1 -free $\overline{\mathbf{T}}$-translation and vice versa.

Modifications to formation and translation rules are possible, and are given below, that secure as formulas all of the above strings (which may seem a gain) while trading the unique-translation feature for a multipletranslation feature (which may seem a loss).
2 Replace clause (7) by the following clause (7'):
(a^{\prime}) An expression $\boldsymbol{1} \alpha \phi, \alpha$ a variable and ϕ a formula or pseudo-formula, is an 1-description.
(b^{\prime}) An expression ϕ is a pseudo-term ($p s e u d o$-formula) just in case a term (formula) ϕ^{\prime} is like ϕ except for having, in place of all occurrences in ϕ of one or more 1-descriptions, occurrences of variables not in ϕ. A term (formula) related to a pseudo-term (pseudo-formula) ϕ in this manner is an associated term (formula) of ϕ.
(c^{\prime}) An occurrence of a variable α is bound in a term or formula π just in case it stands within an occurrence in π of an expression χ such that (i) either χ is $\wedge \alpha \phi, \vee \alpha \phi,\urcorner \alpha \phi$, or $\bar{T} \alpha \phi \psi$, or χ is $[1 \alpha \phi] \psi$ and the occurrence of

