Notre Dame Journal of Formal Logic Volume XVII, Number 3, July 1976 NDJFAM

MONADS FOR REGULAR AND NORMAL SPACES

ROBERT WARREN BUTTON

Given an enlargement $*(X, \mathfrak{F})$ of a topological space (X, \mathfrak{F}) , the monad of a point $x \in X$ is defined to be $\mu(x) = \bigcap \{*F: x \in F \in \mathfrak{F}\}$. It is known that for any space (X, \mathfrak{F}) , the family of monads $\{\mu(x): x \in X\}$ contains all the information about \mathfrak{F} in the sense that for each $x \in X$, $\{F \subseteq X: \mu(x) \subseteq *F\}$ is exactly the neighborhood filter at x. However, it is possible to say something about \mathfrak{F} without resorting to this method. For example, a space X is Hausdorff iff for any two points x and y in X, $\mu(x) \cap \mu(y) = \emptyset$. In this paper some further relationships between the topology on X and $\{\mu(x): x \in X\}$ will be shown, and particularly nice characterizations of regular and normal spaces will be given. These characterizations will be in terms of a natural topology on *X, the Q-topology. Let us briefly consider the Q-topology.

It is possible to write a formal sentence expressing the fact that \Im is a topology on X, so in any enlargement $*(X, \Im)$, $*\Im$ is closed under *finite intersections (and hence under finite intersections) and under internal unions. $*\Im$ also contains \emptyset and *X, so is the base for a topology on *X, the Q-topology. Sets in $*\Im$ are said to be *open, subsets of *X whose complements are in $*\Im$ are said to be *closed, and so on. Robinson has shown that an internal set is *open iff it is Q-open and *closed iff it is Q-closed. Also, a standard set A is open iff *A is *open. We now introduce a new type of refinement relation which is particularly suited for studying Q-topologies.

Definition 1 We shall say that the covering \mathbf{u}_1 of X fills the covering \mathbf{u}_2 of X if for each $V \in \mathbf{u}_2$, $V = \bigcup \{ U \in \mathbf{u}_1 : U \subseteq V \}$.

Let **G** be the collection of all finite open coverings of a given space X and let FR be the filling relation restricted to $\mathbf{G} \times \mathbf{G}$. The left domain of FR is **G** since every covering fills itself and for each finite collection $\mathbf{u}_1, \ldots, \mathbf{u}_n$ of coverings in **G**, $\{U_1 \cap \ldots \cap U_n: U_1 \in \mathbf{u}_1, \ldots, U_n \in \mathbf{u}_n\}$ is a covering in **G** filling each of $\mathbf{u}_1, \ldots, \mathbf{u}_n$, so the relation FR is concurrent. Hence, there is a covering of *X in $*\mathbf{G}$, say φ_F , such that if \mathbf{u} is a finite open covering of X, φ_F fills $*\mathbf{u}$. In general φ_F is not unique and we shall speak of an arbitrary but fixed φ_F . For each $x \in *X$, $\{P \in \varphi_F: x \in P\}$ is an