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TWO NOTES ON ACKERMANN’S SET THEORY

JOHN LAKE

We give solutions to two problems which concern Ackermann’s set
theory, A.* This theory was introduced in [1] and it is now formulated in
the first-order predicate calculus with identity, using ¢ for membership and
an individual constant, V, for the class of all sets. We use the letters ¢, ¥,
6, and X to stand for formulae which do not contain V and capital Greek
letters to stand for any formulae. Then the axioms of A are the universal
closures of

Al Vi(tex<>tey)—x=y,

A2 JzVi(tez<>teVaO),

A3 xeValtexvVu(uet »uex)) — teV,

A4 %, yeV aAVE(E(x, y,t) > teV) — Tz e VVE(tez <> U(x, y, 1)),

where all free variables are shown in A4 and 2z does not occur in the © of
A2. A* is A augmented by the axiom

A5 xeVaJuuex — Juex Vieu tgx.

Firstly, we shall solve a problem from [3], by extending some of the
work on permutation models (see [2], for instance) to models of A.

Definition 1 A functional formula y = F(x) is said to be a permutation if it
represents a bijection of the universe onto itself. If y = F(x) is a permuta-
tion then we write xepy for F(x)ey and ¥y for the formula ¥ with all
instances of € replaced by €g.

Theorem 2 If y = F(x) is a functional e-formula such that

(i) F is a permutation,
(ii) xeV iff F(x)eV,

then we can interpret A in A using ep fov the membership velation and v
for V.
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