Notre Dame Journal of Formal Logic Volume XVII, Number 3, July 1976 NDJFAM

TWO NOTES ON ACKERMANN'S SET THEORY

JOHN LAKE

We give solutions to two problems which concern Ackermann's set theory, A.* This theory was introduced in [1] and it is now formulated in the first-order predicate calculus with identity, using ϵ for membership and an individual constant, \lor , for the class of all sets. We use the letters ϕ , Ψ , θ , and χ to stand for formulae which do not contain \lor and capital Greek letters to stand for any formulae. Then the axioms of A are the universal closures of

 $\begin{array}{l} A1 \quad \forall t \ (t \ \epsilon \ x \longleftrightarrow t \ \epsilon \ y) \to x = y, \\ A2 \quad \exists z \ \forall t \ (t \ \epsilon \ z \Longleftrightarrow t \ \epsilon \ \lor \land \Theta), \\ A3 \quad x \ \epsilon \ \lor \land \ (t \ \epsilon \ x \ \lor \ \forall u \ (u \ \epsilon \ t \ \to u \ \epsilon \ x)) \to t \ \epsilon \ \lor, \\ A4 \quad x, \ y \ \epsilon \ \lor \land \ \forall t \ (\Psi(x, \ y, \ t)) \to t \ \epsilon \ \lor) \to \exists z \ \epsilon \ \lor \ \forall t \ (t \ \epsilon \ z \longleftrightarrow \Psi(x, \ y, \ t)), \end{array}$

where all free variables are shown in A4 and z does not occur in the Θ of A2. A* is A augmented by the axiom

A5 $x \in \bigvee A \exists u u \in x \rightarrow \exists u \in x \forall t \in u t \notin x.$

Firstly, we shall solve a problem from [3], by extending some of the work on permutation models (see [2], for instance) to models of A.

Definition 1 A functional formula y = F(x) is said to be a permutation if it represents a bijection of the universe onto itself. If y = F(x) is a permutation then we write $x \in_F y$ for $F(x) \in y$ and Ψ_F for the formula Ψ with all instances of ϵ replaced by ϵ_F .

Theorem 2 If y = F(x) is a functional ϵ -formula such that

(i) F is a permutation, (ii) $x \in \forall$ iff $F(x) \in \lor$,

then we can interpret A in A using ϵ_F for the membership relation and \lor for \lor .

446

^{*}The author acknowledges the support of the Science Research Council.