Notre Dame Journal of Formal Logic Volume XVII, Number 3, July 1976 NDJFAM

NOTE ON AN INDEPENDENCE PROOF OF JOHANSSON

E. A. NEMESSZEGHY

In [1], p. 124, I. Johansson proves that the propositional formula [1], p. 124, I. Johansson proves that the propositional formula $a \supset a$ is underivable in his minimal logic. He establishes this result by the well-known matrix-method: he gives certain matrices in which all the axioms of the minimal logic are valid, the rules of the system preserve validity, but $[1] (a \supset a)$ is invalid. The matrices he uses are 5×5 matrices, i.e., of 5 rows and 5 columns for the binary connectives. The purpose of this short note is to point out that there are simpler 3×3 matrices which do the same job. The matrices for the connectives are given below. The only designated value is 1.

\supset	1	2	3	۸	1	2	3	v	1	2	3	x	<i>х</i> Г
*1	1	2	3	*1	1	2	3	*1	1	1	1	*1	2
2	1	1	3					2	1	2	2	2	
3	1	1	1	3	3	3	3	3	1	2	3	3	1

It is easy to check that all the axioms of the minimal logic are valid in these matrices, and the rules of the system preserve validity; yet $a \supset a$ is invalid, for if the value of 'a' is 3 then $\neg a \supset 3$ = $(2 \supset 3) = 2 \neq 1$.

REFERENCE

[1] Johansson, I., "Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus," Compositio mathematica, vol. 4 (1936), pp. 119-136.

Heythrop College, University of London London, England

438

Received December 17, 1975