Notre Dame Journal of Formal Logic Volume XVII, Number 1, January 1976 NDJFAM

ON NACHBIN'S CHARACTERIZATION OF A BOOLEAN LATTICE

WILLIAM H. CORNISH

A classical theorem of L. Nachbin [6] characterizes Boolean lattices as those bounded distributive lattices in which each prime ideal is maximal. This result has been generalized and applied to non-bounded distributive lattices by G. Grätzer and E. T. Schmidt, see [3], especially p. 276. Recently, D. Adams ([1], Theorem 1) has given a version of Nachbin's theorem for bounded non-distributive lattices. The object of this note is to give a transparent alternative proof of Grätzer and Schmidt's generalization and also to establish a theorem akin to that of Adams.

The notation and terminology follows that of [2] and Stone's Theorem ([2], Theorem 15, p. 74) will be used freely. Incidentally, a proof of Nachbin's Theorem is given in [2], Theorem 22, p. 76; it is a simplication (possibly due to boundedness) of the proof in [3]. For elements x and y of a lattice \mathfrak{L} , let $\langle x, y \rangle = \{z \in L: x \land z \leq y\}$. When L is distributive, $\langle x, y \rangle$ is an ideal. For a detailed account of such ideals, see Mandelker [5].

The following lemma is an extension of [4], Lemma 12.

Lemma 1 A distributive lattice \mathfrak{L} is relatively complemented if and only if for each x, $y \in L$, $(x] \lor \langle x, y \rangle = L$.

Proof: Suppose \mathfrak{e} is relatively complemented and x, y, z are in L. Let w be the complement of x in $[x \land y \land z, x \lor y \lor z]$. Then, $z = z \land (x \lor y \lor z) = z \land (x \lor w) = (z \land x) \lor (z \land w)$. Since $z \land x \in (x]$ and $z \land w \in \langle x, y \rangle$, it follows that $(x] \lor \langle x, y \rangle = L$.

Conversely, suppose the ideal-theoretic condition holds. Let $c \in [a, b]$. Then, $b \in (c] \lor \langle c, a \rangle$ and so $b = c_1 \lor d$ for some $c_1 \le c$ and $d \in L$ such that $c \land d \le a$. Then $b = c \lor d$ and $(d \lor a) \land b$ is the relative complement of c.

Lemma 2 The set of prime ideals of a distributive lattice \mathfrak{A} is unordered by set-inclusion if and only if, for each $x, y \in L, (x] \lor \langle x, y \rangle = L$.

Proof: Suppose the set of prime ideals is unordered. If $(x] \lor \langle x, y \rangle \neq L$ then there is a prime ideal P such that $(x] \lor \langle x, y \rangle \subseteq P$. Since the set of prime filters is unordered, $L \setminus P$ is a maximal filter. But $x \notin L \setminus P$. Hence,