Notre Dame Journal of Formal Logic
Volume XVII, Number 1, January 1976
NDJFAM

ON NACHBIN'S CHARACTERIZATION OF A BOOLEAN LATTICE

WILLIAM H. CORNISH

A classical theorem of L. Nachbin [6] characterizes Boolean lattices as those bounded distributive lattices in which each prime ideal is maximal. This result has been generalized and applied to non-bounded distributive lattices by G. Grätzer and E. T. Schmidt, see [3], especially p. 276. Recently, D. Adams ([1], Theorem 1) has given a version of Nachbin's theorem for bounded non-distributive lattices. The object of this note is to give a transparent alternative proof of Grätzer and Schmidt's generalization and also to establish a theorem akin to that of Adams.

The notation and terminology follows that of [2] and Stone's Theorem ([2], Theorem 15, p. 74) will be used freely. Incidentally, a proof of Nachbin's Theorem is given in [2], Theorem 22, p. 76; it is a simplication (possibly due to boundedness) of the proof in [3]. For elements x and y of a lattice \mathfrak{Z}, let $\langle x, y\rangle=\{z \in L: x \wedge z \leqslant y\}$. When L is distributive, $\langle x, y\rangle$ is an ideal. For a detailed account of such ideals, see Mandelker [5].

The following lemma is an extension of [4], Lemma 12.
Lemma 1 A distributive lattice $\mathbf{\Sigma}$ is relatively complemented if and only if for each $x, y \in L,(x] \vee\langle x, y\rangle=L$.
Proof: Suppose $\boldsymbol{\Omega}$ is relatively complemented and x, y, z are in L. Let w be the complement of x in $[x \wedge y \wedge z, x \vee y \vee z]$. Then, $z=z \wedge(x \vee y \vee z)=$ $z \wedge(x \vee w)=(z \wedge x) \vee(z \wedge w)$. Since $z \wedge x \in(x]$ and $z \wedge w \in\langle x, y\rangle$, it follows that $(x] \vee\langle x, y\rangle=L$.

Conversely, suppose the ideal-theoretic condition holds. Let $c \in[a, b]$. Then, $b \in(c] \vee\langle c, a\rangle$ and so $b=c_{1} \vee d$ for some $c_{1} \leqslant c$ and $d \epsilon L$ such that $c \wedge d \leqslant a$. Then $b=c \vee d$ and $(d \vee a) \wedge b$ is the relative complement of c.
Lemma 2 The set of prime ideals of a distributive lattice $\boldsymbol{\mathcal { L }}$ is unordered by set-inclusion if and only if, for each $x, y \in L,(x] \vee\langle x, y\rangle=L$.
Proof: Suppose the set of prime ideals is unordered. If $(x] \vee\langle x, y\rangle \neq L$ then there is a prime ideal P such that $(x] \vee\langle x, y\rangle \subseteq P$. Since the set of prime filters is unordered, $L \backslash P$ is a maximal filter. But $x \notin L \backslash P$. Hence,

