Notre Dame Journal of Formal Logic Volume XVII, Number 1, January 1976 NDJFAM

SOME NOTES ON "A DEDUCTION THEOREM FOR RESTRICTED GENERALITY"

M. W. BUNDER

In [2] the deduction theorem for Ξ :

If $X_0, X \vdash Y$, and $X_0 \vdash L([\mathbf{u}]\mathbf{X})$ where u is not involved in X_0 , then $X_0 \vdash X \supseteq_u Y$,¹

was proved using the following axioms.

Axiom 2. $\vdash Lx \supset_x \Xi xx$. Axiom 3. $\vdash Lx \supset_{x,y} : xu \supset_u . yuv \supset_v xu$. Axiom 4. $\vdash Lx \supset_{x,t} : xu \supset_u yu(tu) \supset_y . (xu \supset_u (yuv \supset_v zuv)) \supset_x (xu \supset_u zu(tu))$. Axiom 5. $\vdash Lx \supset_x \Xi x$ (WQ). Axiom 6. $\vdash \Xi IH$. Axiom 7. $\vdash LH$.

Of these, $\vdash LH$ as it restricts the system to obs which satisfy

 $Au \vdash H(Hu)$,

is a somewhat unsatisfying axiom. In particular with E = A it is inconsistent with the others (see [1]).

Also the rules obtained by applying Rule Ξ once to each of the remaining axioms are consistent. This was shown in an unpublished paper by H. B. Curry and the author. Curry in [3] proved that for an equivalent system no nonpropositions are provable and Seldin in [4] has shown consistency in a stronger sense.

We show here that the deduction theorem for Ξ can be proved without $\vdash LH$. We achieve this by taking L as primitive (rather than as defined by L \equiv FAH) and we define H as BLK. Axiom 3 leads to the rule:

$$Lx, xu \vdash yuv \supset_v xu$$

Received February 12, 1975

^{1.} In [2] L = FAH. $X \supset_{u} Y$ is an alternative notation for $\Xi([u]X)([u]Y)$.