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ON THE RELATION BETWEEN FREE DESCRIPTION THEORIES
AND STANDARD QUANTIFICATION THEORY

RICHARD E. GRANDY

Meyer and Lambert [2] constructed a mapping which takes formulas of
free quantification theory into formulas of standard quantification theory
and preserves validity. One adds a one-place predicate D to the vocabulary
and translates thus:

For atomic P, σ(P) = P

σ(A — B) = σ(A) — σ(B)

σ(-A) = MA)

σ((x)A) = (x)[Dx-> σ(A)].

There is also an interesting mapping τ from models of free quantifica-
tion theory (FQ) to models of standard quantification theory (SO). If 9W is a
model for FQ such that m = (D, £>*, R), then τ(m) = (ΰU D*, R, D). In
other words, the domain of the SQ model is the union of the two FQ
domains, each predicate letter receives the same interpretation as in FQ
and the predicate letter D is assigned the domain of the FQ model. It is
easy to show that for any sequence of, a satisfies A in SP1 iff a satisfies σ(A)
in τ(STί).1

One can construct a similar pair of mappings for Scott's free descrip-
tion theory [3], which is obtained by adding to free quantification theory the
two schema

I) (y) [y = ΊxA]<r->(x) [x = y <-> A] where y is not free in A
II) -(Ey) [y = ΊXA] — ixA = ix(x Φ X).

Models of the Scott system are simply models of FQ with the further
requirement that one specify an element of D* which is the denotation of all
bad descriptions. In order to construct a mapping r for this system, we

1. Thus the rather lengthy discussion of nominal interpretations in [2] could have
been dispensed with since including them gives the same class of valid formulas.
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