Notre Dame Journal of Formal Logic Volume XVII, Number 1, January 1976 NDJFAM

ON THE RELATION BETWEEN FREE DESCRIPTION THEORIES AND STANDARD QUANTIFICATION THEORY

RICHARD E. GRANDY

Meyer and Lambert [2] constructed a mapping which takes formulas of free quantification theory into formulas of standard quantification theory and preserves validity. One adds a one-place predicate D to the vocabulary and translates thus:

For atomic $P, \sigma(P) = P$

 $\sigma(A \to B) = \sigma(A) \to \sigma(B)$ $\sigma(-A) = -\sigma(A)$ $\sigma((x)A) = (x) [Dx \to \sigma(A)].$

There is also an interesting mapping τ from models of free quantification theory (FQ) to models of standard quantification theory (SQ). If \mathfrak{M} is a model for FQ such that $\mathfrak{M} = \langle D, D^*, R \rangle$, then $\tau(\mathfrak{M}) = \langle D \cup D^*, R, D \rangle$. In other words, the domain of the SQ model is the union of the two FQ domains, each predicate letter receives the same interpretation as in FQ and the predicate letter D is assigned the domain of the FQ model. It is easy to show that for any sequence α , α satisfies A in \mathfrak{M} iff α satisfies $\sigma(A)$ in $\tau(\mathfrak{M})$.¹

One can construct a similar pair of mappings for Scott's free description theory [3], which is obtained by adding to free quantification theory the two schema

I) $(y)[y = \neg xA] \leftrightarrow (x)[x = y \leftrightarrow A]$ where y is not free in A II) $-(Ey)[y = \neg xA] \rightarrow \neg xA = \neg x(x \neq x).$

Models of the Scott system are simply models of FQ with the further requirement that one specify an element of D^* which is the denotation of all bad descriptions. In order to construct a mapping τ for this system, we

^{1.} Thus the rather lengthy discussion of nominal interpretations in [2] could have been dispensed with since including them gives the same class of valid formulas.