Notre Dame Journal of Formal Logic Volume XVII, Number 1, January 1976 NDJFAM

ALGEBRAIC SEMANTICS FOR S2⁰ AND NECESSITATED EXTENSIONS

R. ROUTLEY and H. MONTGOMERY

Algebraic techniques are used to show that Feys' system $S2^{0}(cf.[1])$ and certain necessitated extensions of $S2^{0}$, such as Lewis' systems S2 and S3, have the finite model property, and accordingly are decidable. Representation theorems are then used to establish set-theoretical semantics for the modal systems studied. Where the results obtained are not new they improve on earlier results (such as those of Lemmon in [3]) in two respects; first they provide direct algebraic treatments of the systems, and second they furnish better semantical results (see the discussion of theorem J for S2). The techniques used however follow those of McKinsey (in [4]) and Lemmon (in [2] and [3]). Since it is now known that these techniques do not work for all necessitated extensions of S2⁰, a somewhat piecemeal approach is inevitable. Weak results are also obtained for Feys' system S1⁰ and Lewis' system S1 (for details of these systems see [1]).

The sentential systems studied are of interest not so much as systems containing a viable necessity operator \Box , but as intensional logics which axiomatise epistemic or other operators. For instance S2^o can be interpreted as an epistemic logic such that \Box reads 'it is believed reasonably that', and S2 as an epistemic logic where \Box reads 'it is known that'. The set-theoretical semantics established are however independent of these epistemic interpretations.

The basic system examined, Feys' $S2^{0}$, has as postulates:

T1. $A \& B \exists A$ T2. $A \& B \exists B \& A$ T3. $(A \& B) \& C \exists .A \& (B \& C)$ T4. $A \exists A \& A$ T5. $A \exists B \& B \exists C \exists .A \exists C$ T6. $\Diamond (A \& B) \exists \Diamond A$ Strict Detachment (SD): $\vdash A, \vdash A \exists B \longrightarrow \vdash B$ Adjunction (A): $\vdash A, \vdash B \longrightarrow \vdash A \& B$ Substitutivity of Strict Equivalents (SSE): $\vdash A \rightleftharpoons B, \vdash C(A) \longrightarrow \vdash C(B)$

Received August 11, 1969

44