On the Number of Nonisomorphic Models in L_∞,_κWhen κ is Weakly Compact

SAHARON SHELAH*

In a previous paper [3] we proved that if V = L then for every regular cardinal λ which is not weakly compact and any model M of cardinality λ , the number of nonisomorphic models of cardinality λ which are $L_{\infty,\lambda}$ -equivalent to M is 1 or 2^{λ} . Here we are going to prove that the above theorem is not true for λ weakly compact.

Main Theorem Let λ be a weakly compact cardinal. Then there exists a model M, $||M|| = \lambda$ such that $|K_M^{\lambda}| = 2$, where $K_M^{\lambda} = \{N/\cong: N \equiv_{\infty,\lambda} M, ||N|| = \lambda\}$; moreover, we can obtain any number $\leq \lambda$ instead of 2.

Proof: The theorem follows immediately from the next two lemmas.

Notation: We shall always assume that the universe of models of cardinality λ is λ and for $A \subseteq \lambda$ we denote by M_A the submodel of M whose universe is A with the relation symbols R of M of $\langle |A|$ places such that $R \upharpoonright A \neq \phi$. (Note that e.g., $M \equiv_{\infty,\lambda} N$ does mean that the models have the same language whereas $M \prec_{\omega_1,\omega} N$ does not.)

Lemma 1 Let M^1 , M^2 be models with the following properties:

- (1) $M^1 \not\cong M^2$
- (2) $M^1 \equiv_{\infty,\lambda} M^2$
- (3) $||M^1|| = ||M^2|| = \lambda$

^{*}This research was partially supported by the United States-Israel Binational Science Foundation by a grant No. 1110.