On the Number of Nonisomorphic Models in $L_{\infty, k}$ When K is Weakly Compact

SAHARON SHELAH*

In a previous paper [3] we proved that if $V=L$ then for every regular cardinal λ which is not weakly compact and any model M of cardinality λ, the number of nonisomorphic models of cardinality λ which are $L_{\infty, \lambda}$-equivalent to M is 1 or 2^{λ}. Here we are going to prove that the above theorem is not true for λ weakly compact.

Main Theorem Let λ be a weakly compact cardinal. Then there exists a model $M,\|M\|=\lambda$ such that $\left|K_{M}^{\lambda}\right|=2$, where $K_{M}^{\lambda}=\left\{N / \cong: N \equiv_{\infty, \lambda} M,\|N\|=\lambda\right\}$; moreover, we can obtain any number $\leqslant \lambda$ instead of 2 .

Proof: The theorem follows immediately from the next two lemmas.
Notation: We shall always assume that the universe of models of cardinality λ is λ and for $A \subseteq \lambda$ we denote by M_{A} the submodel of M whose universe is A with the relation symbols R of M of $<|A|$ places such that $R \upharpoonright A \neq \phi$. (Note that e.g., $M \equiv_{\infty, \lambda} N$ does mean that the models have the same language whereas $M<{ }_{\omega_{1}, \omega} N$ does not.)

Lemma 1 Let M^{1}, M^{2} be models with the following properties:
(1) $M^{1} \neq M^{2}$
(2) $M^{1} \equiv_{\infty, \lambda} M^{2}$
(3) $\left\|M^{1}\right\|=\left\|M^{2}\right\|=\lambda$

[^0]
[^0]: *This research was partially supported by the United States-Israel Binational Science Foundation by a grant No. 1110.

