Notre Dame Journal of Formal Logic Volume 22, Number 3, July 1981

Careful Choices—A Last Word on Borel Selectors

To the memory of C. D. Papakyriakopoulos

JOHN P. BURGESS

Selector theory as surveyed in [13] and [14] deals with the following problem (instances of which arise in control theory, probability, mathematical economics, operator theory, etc.): We are given a multifunction F between reasonable spaces T and X (a map assigning each $t \in T$ a nonempty $F(t) \subseteq X$) and seek an ordinary function f from T to X with acceptable measurability properties constituting a selector for F (satisfying $f(t) \in F(t)$ for all t). Of course, the Axiom of Choice says that a selector exists; but to get a measurable one, we need to impose hypotheses on F and choose "carefully". The past few years have seen much progress (cf. [10], [11], [14]) on the Borel case of the selector problem. In this case we assume X is a Polish topological space (one admitting a countable basis and a complete metric) and T at least a Suslin space (homeomorph of an analytic subspace of a Polish space). Our goal is to find weak hypotheses on F guaranteeing the existence of a Borel-measurable selector f (one for which $f^{-1}[U]$ is Borel in T whenever U is open in X).

The present paper* shows that substantial improvements of existing results on the Borel selector problem can be achieved through application of ideas developed by Vaught in his prize-winning studies [12] on the model theory of infinitary logic. The precise statement of the result obtained is given in Section 3 below. Thanks to certain counterexamples, we can say that this result is in many ways "best possible". Selector theory is thus a relatively down-to-earth area of mathematics where methods from modern logical research can be fruitfully applied.

^{*}The author is indebted to Dan Mauldin, Douglas Miller, Shashi Srivastava, and Daniel Wagner for many helpful discussions.