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Careful Choices—A Last Word

on Borel Selectors

To the memory of C. D. Papakyriakopoulos

JOHN P. BURGESS

Selector theory as surveyed in [13] and [14] deals with the following
problem (instances of which arise in control theory, probability, mathematical
economics, operator theory, etc.): We are given a multifunction F between
reasonable spaces T and X (a map assigning each t e T a nonempty F{t) C X)
and seek an ordinary function / from T to X with acceptable measurability
properties constituting a selector for F (satisfying f(t) e F(t) for all t). Of
course, the Axiom of Choice says that a selector exists; but to get a measurable
one, we need to impose hypotheses on F and choose "carefully". The past few
years have seen much progress (cf. [ 10], [11], [ 14]) on the Borel case of the
selector problem. In this case we assume X is a Polish topological space (one
admitting a countable basis and a complete metric) and T at least a Suslin space
(homeomorph of an analytic subspace of a Polish space). Our goal is to find
weak hypotheses on F guaranteeing the existence of a Borel-measurable selector
/ (one for which f'1[U] is Borel in T whenever U is open in X).

The present paper* shows that substantial improvements of existing results
on the Borel selector problem can be achieved through application of ideas
developed by Vaught in his prize-winning studies [12] on the model theory of
infinitary logic. The precise statement of the result obtained is given in
Section 3 below. Thanks to certain counterexamples, we can say that this
result is in many ways "best possible". Selector theory is thus a relatively
down-to-earth area of mathematics where methods from modern logical re-
search can be fruitfully applied.

*The author is indebted to Dan Mauldin, Douglas Miller, Shashi Srivastava, and Daniel
Wagner for many helpful discussions.
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