Automorphisms of ω-Cubes

J. C. E. DEKKER

1 Preliminaries The word set is used for a collection of numbers, class for a collection of sets. We write ε for the set of all numbers, o for the empty set of numbers, card Γ for the cardinality of the collection Γ, and $P_{\text {fin }}(\alpha)$ for the class of all finite subsets of α. If f is a function of n variables, i.e., a mapping from a subcollection of ε^{n} into ε, we denote its domain and range by δf and ρf respectively. A collection of functions is called a family. The image under f of the number n is denoted by f_{n} or $f(n)$, sometimes by both in the same context. We write $\alpha \sim \beta$ for α equivalent to $\beta, \alpha \simeq \beta$ for α recursively equivalent to β, and $\alpha \oplus \beta$ for the symmetric difference of α and β. The collection of all recursive equivalence types (RETs) is denoted by Ω, that of all isols by Λ. Moreover, $\Omega_{0}=\Omega-(0), \Lambda_{0}=\Lambda-(0), \varepsilon_{0}=\varepsilon-(0)$. The reader is referred to [4] and [8] for the basic properties of RETs and isols. Let $\left\langle\rho_{n}\right\rangle$ be the canonical enumeration of the class $\mathcal{P}_{\text {fin }}(\varepsilon)$, i.e., let $\rho_{0}=o$ and

$$
\rho_{n+1}=\left\{\begin{array}{l}
\left(a_{1}, \ldots, a_{k}\right), \text { where } \\
n+1=2^{a(1)}+\ldots+2^{a(k)} \\
a_{1}, \ldots, a_{k} \text { distinct. }
\end{array}\right.
$$

Put $r_{n}=\operatorname{card} \rho_{n}$, then r_{n} is a recursive function. If σ is a finite set, can σ denotes the canonical index of σ, i.e., the unique number i such that $\sigma=\rho_{i}$. For $\alpha \subset \varepsilon$, $i \in \varepsilon$,

$$
\begin{aligned}
& {[\alpha ; i]=\left\{x \mid \rho_{x} \subset \alpha \& r_{x}=i\right\}, 2^{\alpha}=\left\{x \mid \rho_{x} \subset \alpha\right\} \text { so that }} \\
& \alpha \simeq \beta \Rightarrow(\forall i)[[\alpha ; i] \simeq[\beta ; i]], \alpha \simeq \beta \Rightarrow 2^{\alpha} \simeq 2^{\beta} .
\end{aligned}
$$

If f is a function of one variable, $\delta f^{*}=2^{\delta f}, f^{*}(0)=0$ and

$$
f^{*}\left(2^{a(1)}+\ldots+2^{a(k)}\right)=2^{f a(1)}+\ldots+2^{f a(k)}
$$

for distinct elements a_{1}, \ldots, a_{k} of δf. Equivalently,

$$
\delta f^{*}=2^{\delta f}, \rho_{f}^{*}(x)=f\left(\rho_{x}\right)
$$

