Notre Dame Journal of Formal Logic Volume 22, Number 1, January 1981

Quick Completeness Proofs for Some Logics of Conditionals

JOHN P. BURGESS

Introduction We start from the idea that a conditional $\alpha \rightarrow \beta$ is true iff $\alpha \& \sim \beta$ is either an impossibility or at least a *remoter* possibility, in some sense, than $\alpha \& \beta$. Let us try to make this precise.

First, we fix a *language* for the logic of conditionals: Let \mathcal{L} be the set of formulas obtainable from the variables p_1, p_2, p_3, \ldots using the arrow and the usual truth-functional connectives (viz., the true T, the false \bot , negation \sim , conjunction &, inclusive disjunction \vee , material \supset and \equiv). For $A \subseteq \mathcal{L}$ finite, $\wedge A$ denotes the conjunction, $\vee A$ the disjunction, of all elements of A (suitably grouped); e.g., $\wedge \phi = T$, $\vee \phi = \bot$.

Second, we fix a notion of *model*. Let \mathcal{M} be the set of all pairs (W, R), with W a nonempty set and R a trinary relation on it. For $x \in W$, we set $W_x = \{y: \exists z Rxyz\}$, and we require that R satisfy the following *reflexivity* and *transitivity* requirements:

 $\forall x \in W \ \forall y \in W_x Rxyy$ $\forall x \in W \ \forall y, z, w \in W_x (Rxyz \& Rxzw \supset Rxyw).$

A model-class is any $\mathcal{W} \subseteq \mathcal{M}$ closed under isomorphism; the interesting examples are obtained by imposing certain *characteristic restrictions* on R.

Next, we fix a notion of satisfaction/validity. A valuation in $(W, R) \in \mathcal{N}_{V}$ is a map V assigning each variable p_{i} a subset of W. V can be extended to all of \mathcal{L} by treating truth-functions in the usual way (e.g., $V(\sim \alpha) = W - V(\alpha)$, $V(\alpha \& \beta) = V(\alpha) \cap V(\beta)$), and defining $V(\alpha \rightarrow \beta)$ as the set of all $x \in W$ such that:

 $\forall y \in W_x \cap V(\alpha) \exists z \in W_x \cap V(\alpha) [Rxzy \& \forall t \in W_x \cap V(\alpha)(Rxtz \supset t \in V(\beta))]$

Received October 4, 1979; revised February 12, 1980