Consequences, Consistency, and Independence in Boolean Algebras

FRANK MARKHAM BROWN and SERGIU RUDEANU

Introduction In this paper we work within an arbitrary but fixed Boolean algebra $(B, +, \cdot, ', 0, 1)$ and with vectors $\mathbf{x} = (x_1, \ldots, x_n) \in B^n$, $\mathbf{y} = (y_1, \ldots, y_m) \in B^m$, where *n* and *m* are two arbitrary but fixed positive integers.* A Boolean function $f: B^n \to B$ is characterized by the Boole expansion theorem [1], [2]¹

(1)
$$f(x_1,\ldots,x_n) = \sum_{(\alpha_1,\ldots,\alpha_n) \in \{0,1\}^n} f(\alpha_1,\ldots,\alpha_n) x_1^{\alpha_1}\ldots x_n^{\alpha_n},$$

where $\sum_{n=1}^{\infty}$ denotes iterated sum (disjunction) when the vector $(\alpha_1, \ldots, \alpha_n)$ runs over $\{0, 1\}^n$ and $x^0 = x', x^1 = x$. If each $(\alpha_1, \ldots, \alpha_n) \in \{0, 1\}^n$ is interpreted as a number $i \in \{0, \ldots, 2^n - 1\}$ written in basis 2 and the corresponding minterm $x_1^{\alpha_1} \ldots x_n^{\alpha_n}$ is denoted by $m_i(\mathbf{x})$, formula (1) becomes

(2)
$$f(x) = \sum_{i=0}^{2^{n-1}} f(i)m_i(x) \quad .$$

In particular a Boolean function $r: B^{n+m} \rightarrow B$ admits the expansions

(3)
$$r(x, y) = \sum_{i=0}^{2^{n-1}} r(i, y) m_i(x)$$
$$= \sum_{j=0}^{2^{m-1}} r(x, j) m_j(y)$$
$$= \sum_{i=0}^{2^{n-1}} \sum_{j=0}^{2^{m-1}} r(i, j) m_i(x) m_j(y)$$

Received April 9, 1979; revised May 2, 1980

^{*}The work of F. M. Brown was supported by the National Science Foundation under Grant MCS 77-01429.