Consequences, Consistency, and Independence in Boolean Algebras

FRANK MARKHAM BROWN and SERGIU RUDEANU

Introduction In this paper we work within an arbitrary but fixed Boolean algebra $(B,+, \cdot, ', 0,1)$ and with vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in B^{n}, \boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \epsilon$ B^{m}, where n and m are two arbitrary but fixed positive integers.* A Boolean function $f: B^{n} \rightarrow B$ is characterized by the Boole expansion theorem [1], [2] ${ }^{1}$

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{0,1\}^{n}} f\left(\alpha_{1}, \ldots, \alpha_{n}\right) x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \tag{1}
\end{equation*}
$$

where \sum denotes iterated sum (disjunction) when the vector ($\alpha_{1}, \ldots, \alpha_{n}$) runs over $\{0,1\}^{n}$ and $x^{0}=x^{\prime}, x^{1}=x$. If each $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{0,1\}^{n}$ is interpreted as a number $i \in\left\{0, \ldots, 2^{n}-1\right\}$ written in basis 2 and the corresponding minterm $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ is denoted by $m_{i}(x)$, formula (1) becomes

$$
\begin{equation*}
f(x)=\sum_{i=0}^{2^{n-1}} f(i) m_{i}(\boldsymbol{x}) \tag{2}
\end{equation*}
$$

In particular a Boolean function $r: B^{n+m} \rightarrow B$ admits the expansions

$$
\begin{align*}
r(\boldsymbol{x}, \boldsymbol{y}) & =\sum_{i=0}^{2^{n}-1} r(i, \boldsymbol{y}) m_{i}(\boldsymbol{x}) \tag{3}\\
& =\sum_{j=0}^{2^{m-1}} r(\boldsymbol{x}, j) m_{j}(\boldsymbol{y}) \\
& =\sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{m}-1} r(i, j) m_{i}(\boldsymbol{x}) m_{j}(\boldsymbol{y})
\end{align*}
$$

[^0]
[^0]: *The work of F. M. Brown was supported by the National Science Foundation under Grant MCS 77-01429.

