On Fleissner's Diamond

SAHARON SHELAH

Fleissner [1], in the course of showing that V = L implies every normal topological space is collectionwise Hausdorff, used a strengthening of Jensen's \diamond principle, denoted \diamond_{SS} , and often called "diamond for stationary systems". Mathias [3] stated \diamond_{SS} explicitly and asked whether for \aleph_1 , for example, \diamond_{SS} follows from the related principles $\diamond_{\aleph_1}^*$ or $\diamond_{\aleph_1}^+$. The purpose of this paper* is to show that these implications may fail even under relatively nice conditions. This result was announced in [4].

For the remainder of the paper λ denotes a regular uncountable cardinal and S a stationary subset of λ . The reader may, for simplicity, want to identify λ with \aleph_1 .

We now introduce the various sorts of \diamond -sequences under consideration and mention some of the connections between them.

Definition 1 A sequence $\langle A_{\alpha}: \alpha \in S \rangle$ is a \diamond_{S} -sequence if for each $\alpha \in S$, $A_{\alpha} \subseteq \alpha$ and for every $A \subseteq \lambda$, $\{\alpha \in S: A \cap \alpha = A_{\alpha}\}$ is stationary (in λ).

Definition 2 A sequence $\langle P_{\alpha}: \alpha \in S \rangle$ is a weak \diamond_S sequence (w- \diamond_S sequence) if each P_{α} is a set of subsets of α , and for every $A \subseteq \lambda$, $\{\alpha: A \cap \alpha \in P_{\alpha}\}$ is stationary. If, in addition, $\overline{\overline{P}}_{\alpha} \leq \overline{\overline{\alpha}}$ for each $\alpha \in S$, we call $\langle P_{\alpha}: \alpha \in S \rangle$ a \diamond_S -sequence.

The above definitions obviously involve an abuse of terminology. Notice however, that $\langle A_{\alpha}: \alpha \in S \rangle$ is a \diamond_{S} -sequence in the sense of Definition 1 iff $\langle \{A_{\alpha}\}: \alpha \in S \rangle$ is a \diamond_{S} -sequence in the sense of Definition 2.

Kunen has proved the following result relating the existence of the two types of \diamond_S -sequences.

Theorem 1 (Kunen) If there is a \diamond_S -sequence $\langle P_{\alpha}: \alpha \in S \rangle$, with $P_{\alpha} \subseteq P(\alpha)$, then there is a \diamond_S -sequence $\langle A_{\alpha}: \alpha \in S \rangle$, with $A_{\alpha} \subseteq \alpha$.

^{*}This research was partially supported by the NSF and by the United States Israel Binational Science Foundation grant 1110.