Notre Dame Journal of Formal Logic Volume 21, Number 3, July 1980

Solution to a Problem of Chang and Lee

RICHARD STATMAN

In this note we show that input resolution with paramodulation (IP) is strictly weaker than unit resolution with paramodulation (UP).

First we introduce some notation. A is always an atomic sentence and p, q are always statement letters. \vdash_X , for X = IP, UP, I (input resolution), or U (unit resolution), means derivability by means of the rules of X.

We work in a fixed first-order language and consider only ground clauses. E is the set of all clauses of the form $\{ \exists t_0 = t_1, \exists A(t_i), A(t_{1-i}) \}$ together with all those of the form $\{t = t\}$.

A set L of literals is consistent if $\exists \exists l \in L \ \overline{l} \in L$.

If L is a consistent set of literals and C is a clause we say $L \approx C$ if $L \cap C \neq \emptyset$ or $\exists l_1 \in C \exists l_2 \in C \ l_1 \neq l_2 \land \overline{l_1} \notin L \land \overline{l_2} \notin L$.

If C_1 and C_2 are clauses define $[C_2/p]C_1 = C_1$ if $p \notin C_1$, $[C_2/p]C_1 = (C_1 - \{p\}) \cup C_2$ if $p \notin C_1$. If S is a set of clauses define $[C_2/p]S = \{[C_2/p]C_1: C_1 \notin S\}$.

Substitution lemma Suppose there is a UP derivation of C_1 from S with no clause containing $\neg p$ and with $\{p\}$ at most as its last clause, then for each C_2 there is a $C_3 \subset [C_2/p]C_1$ such that $[C_2/p]S \mid_{UP} C_3$.

The proof of the substitution lemma is routine.

Soundness lemma If L is a consistent set of literals and S a set of clauses then $L \models S \cup E \Rightarrow S \cup E \nexists \Phi$.

Proof: Prove by induction on the length of an input derivation of C from $S \cup E$ that $\exists l \in C \ (l \in L \lor \overline{l} \notin L)$.

Completeness lemma If S is a set of clauses then there is a consistent set of literals L such that $S \cup E \models_{I}^{L} \phi \Rightarrow L \models S \cup E$.

Received January 11, 1979