## CONSTRUCTIVELY NONPARTIAL RECURSIVE FUNCTIONS

## BRUCE M. HOROWITZ

Rose and Ullian [3] called a total function $f(x)$ constructively nonrecursive iff for some recursive function $g(x), f(g(n)) \neq \varphi_{n}(g(n))$ for all $n \in N$, where $\varphi_{n}(x)$ is the partial recursive function with index $n$. We define a partial function $f(x)$ to be constructively nonpartial recursive iff for some recursive $g(x), f(g(n)) \neq \varphi_{n}(g(n))$, where $\simeq$ is equality for partial functions. We say that $f(x)$ is constructively nonpartial recursive via $g(x)$. Note that for total functions, the two concepts coincide.

An example of a constructively nonpartial recursive function which is a total function is:

$$
f(x)= \begin{cases}\varphi_{x}(x)+1 & \text { if } \varphi_{x}(x) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

Indeed, letting $g(x)=x$, we have

$$
f(g(n))=f(n)= \begin{cases}\varphi_{n}(n)+1 \neq \varphi_{n}(n)=\varphi_{n}(g(n)) & \text { if } \varphi_{n}(n) \text { is defined } \\ 0 \neq \varphi_{n}(n)=\varphi_{n}(g(n)) & \text { otherwise }\end{cases}
$$

As an example of a constructively nonpartial recursive function which is not total, we have:

$$
h(x)= \begin{cases}\text { undefined } & \text { if } \varphi_{x}(x) \text { is defined } \\ x & \text { otherwise }\end{cases}
$$

$h(x)$ is constructively nonpartial recursive via $g(x)=x$.
The theory of constructively nonpartial recursive functions is intimately connected with the theory of productive sets. As an analogue to the fact that any $1-1$ recursive function is the productive function for some set, we have the following:

Theorem 1 For every 1-1 recursive function $g(x)$, there is a function $f(x)$ which is constructively nonpartial recursive via $g(x)$.
Proof: Suppose $g(x)$ is a 1-1 recursive function. Let $g^{-1}(x)=(\mu y)(g(y)=x)$; $g^{-1}(x)$ is partial recursive. Define

