Notre Dame Journal of Formal Logic Volume XX, Number 2, April 1979 NDJFAM

SENTENTIAL NOTATIONS: UNIQUE DECOMPOSITION

JORDAN HOWARD SOBEL

Two notations for sentential logic are compared: that of Chapter II of Logic: Techniques of Formal Reasoning (New York, 1964) by Donald Kalish and Richard Montague and a parenthesis-free variant presented in Chapter VIII*. These notations, SC and SC* respectively, are set out in section 1, said to be unambigous in section 2, and in sections 3 and 4 shown to be unambiguous; lastly, and briefly, in section 5 comments are made on their relative merits.

1 The two notations Symbols: sentence letters P through Z with or without subscripts, sentential connectives $\sim, \rightarrow, \vee, \wedge$, and \leftrightarrow, and in the case of $S C$ left- and right-parentheses.

The set of sentences of $S C$ is the smallest set such that: (1) Sentence letters are members of $S C$. (2) If ϕ and ψ are members of $S C$, then so are, $\sim \phi,(\phi \rightarrow \psi),(\phi \vee \psi),(\phi \wedge \psi)$, and, $(\phi \leftrightarrow \psi)$.

The set of sentences of $S C *$ is the smallest set such that: (1) Sentence letters are members of $S C^{*}$. (2) If ϕ and ψ are members of $S C^{*}$, then so are $\sim \phi, \rightarrow \phi \psi, \vee \phi \psi, \wedge \phi \psi$, and, $\leftrightarrow \phi \psi$.

The SC-counterpart of an $S C^{*}$-sentence is reached by successive applications of the rule:

Where ϕ is an $S C^{*}$-sentence or sequence of $S C$-symbols and the leftmost occurrence in ϕ of a binary connective is an occurrence of δ, replace the left-most occurrence in ϕ of an $S C^{*}$-sentence of the form,

$$
\delta \psi \chi
$$

[^0]
[^0]: *The lemma for Section 4 is entailed by Theorem 1 of Chapter IV, The Elements of Mathematical Logic, Paul Rosenbloom (New York, 1950), p. 154; see also "Bibliographical and Other Remarks," p. 205. Theorems similar to that of Section 3 are proved in Introduction to Mathematical Logic, Alonzo Church (Princeton, 1956), pp. 92 and 122; and in section 2 of "Proof by Cases in Formal Logic," S. C. Kleene, Annals of Mathematics, vol. 35 (1934), wherein can be found, see 2I, p. 531 an inductive proof for the lemma of our Section 3. I owe these references to Alisdair Urquhart. None (I confess) were known to me before completion of this paper.

