RECURSIVE EQUIVALENCE TYPES ON RECURSIVE MANIFOLDS

LEON W. HARKLEROAD

Preliminaries* Standard recursive theory is worked on $N=\{0,1,2, \ldots\}$. In this paper the theory is worked on recursive manifolds. An enumeration of a set A is a map from N onto A. If the enumeration is injective, it is said to be an indexing. The ordered pair $\langle A, \mathfrak{A}\rangle$ is said to be a recursively enumerable manifold (REM, for short) if A is the union of enumerated sets (i.e., for some index set P, there is a collection of enumerations $\left\{\alpha_{p}\right\}_{p \in P}$ with $A=\bigcup_{p \in P} A_{p}$, where $A_{p}=\alpha_{p}(N)$), with the enumerations satisfying certain conditions. $\mathfrak{A}=\left\{\alpha_{p}\right\}_{p \in P}$ is called the atlas. Each A_{p} is called a patch. For a set $S \subseteq A$ each $\alpha_{p}^{-1}(S)$ is called a pullback (into N) of S. To make $\langle A, \mathfrak{A}\rangle$ an REM, we require that each $\alpha_{q}^{-1}\left(A_{p}\right)$ must be recursively enumerable (r.e., for short) and the domain of a partial recursive function (p.r. function, for short) f into $\alpha_{p}^{-1}\left(A_{q}\right)$ satisfying $\alpha_{q}=\alpha_{p} \circ f$. If each $\alpha_{q}^{-1}\left(A_{p}\right)$ is recursive (rec., for short), the manifold is a recursive manifold (RM). If each α_{b} is an indexing, $\langle A, \mathfrak{A}\rangle$ is an injective REM (IREM). A manifold which is both an RM and an IREM is an injective recursive manifold (IRM). A manifold such that each patch nontrivially intersects at most finitely many other patches is said to be finitary. For reasons that will appear in the proofs of the first two theorems, all manifolds considered in this paper will be assumed to be finitary IRM's unless otherwise specified. $\langle N, 1\rangle\rangle$ is defined to be the finitary $\mathbf{I R M}$ with $\mathrm{I}=\{\alpha\}, \alpha(n)=n$.

If $\langle A, \mathfrak{A}\rangle$ is an REM and $\langle B, \mathfrak{B}\rangle$ is another REM with enumerations $\beta_{q}, q \in Q$, the cartesian product $A \times B$ can be given a manifold structure as follows: for each $\langle p, q\rangle$ in $P \times Q$, let $A_{p} \times B_{q}$ be a patch of $A \times B$ enumerated by $\gamma_{p, q}$ where $\gamma_{p, q}(\sigma(n, m))=\left\langle\alpha_{p}(n), \beta_{q}(m)\right\rangle, \sigma$ being the standard rec. bijection from N^{2} onto N. This manifold on $A \times B$ is called the direct product of

[^0]
[^0]: *This paper is a thesis written under the direction of Professor Vladeta Vučković and submitted to the Graduate School of the University of Notre Dame in partial fulfillment of the requirements for the Degree of Doctor of Philosophy with Mathematics as the major subject in August 1976. The author is indebted to his director, Professor Vladeta Vučković, for his patient and constant assistance.

