Definable Partitions and Reflection Properties for Regular Cardinals

EVANGELOS KRANAKIS*

The purpose of the present paper is to study the relation between definable partitions and reflection properties of regular cardinals. It turns out that in contrast to Σ_{1}^{1} reflection, which does not lead to a large cardinal axiom (see Section 2), Π_{1}^{1} reflection, which is studied in association with definable stationary subsets of κ (see Section 3) and definable partition properties (see Section 4), leads to a large cardinal axiom. In particular it follows (see Section 4) that the least regular uncountable cardinal which satisfies a certain partition relation lies strictly between the first uncountable inaccessible and the first uncountable Mahlo cardinal (assuming the axiom of constructibility $V=L$).

1 Introduction and preliminaries The Jensen hierarchy ($J_{\alpha}: \alpha \in$ Ord) of constructible sets is defined in [2]. L is the universe of constructible sets. Only structures of the form $M=\left(M, \in, R_{1}, \ldots, R_{r}\right)$ will be considered, where M is a nonempty set and R_{1}, \ldots, R_{r} are relations on M. The Levy hierarchies Σ_{n}, Π_{n} of formulas in the language with predicate symbols $\in, S_{1}, \ldots, S_{n}$ (the arity of each S_{i} is the same as the arity of $\left.R_{i}\right)$, and the corresponding sets of $\Sigma_{n}(\mathbf{M})$, $\Pi_{n}(\mathbf{M}), \Delta_{n}(\mathbf{M})$ of relations on the set M, are defined as usual (see [2]). A formula ϕ is a first-order formula if it is in Σ_{n}, for some $n \geq 0$. The set of first-order formulas is denoted by Σ_{ω}. Any formula of the form $\exists V_{1} \ldots \exists V_{m} \phi$, $\forall V_{1} \ldots \forall V_{m} \phi$, where the formula $\phi=\phi\left(V_{1}, \ldots, V_{m}, x_{1}, \ldots, x_{k}\right)$ is first order, V_{1}, \ldots, V_{m} are second-order variables, x_{1}, \ldots, x_{k} are first-order variables, is respectively called $\Sigma_{1}^{1}, \Pi_{1}^{1}$.

[^0]
[^0]: *The present research was carried out at the Universität Heidelberg. During the preparation of this paper the author was supported by the Minna James Heinaman Stiftung Hannover. I would like to thank I. Phillips for pointing out numerous errors on earlier drafts of the paper.

