Notre Dame Journal of Formal Logic Volume 26, Number 4, October 1985

A Note on the Hanf Number of Second-Order Logic

MATT KAUFMANN*

The Hanf number of a logic L is the least cardinal κ such that every sentence of L that has a model of power at least κ has arbitrarily large models. The Hanf number κ^{Π} of second-order logic is very large; for example, it is readily seen to exceed the first measurable cardinal (if there is one). In fact, Barwise [1] showed that one cannot prove that κ^{Π} exists within the theory ZF_1 , which is ZFC with the full subset schema but with collection only for $\Sigma_1(\mathcal{O})$ formulas. (Here \mathcal{O} is a unary function symbol, and the power set axiom reads: $\forall x \forall y (y \subseteq x \leftrightarrow y \in \mathcal{O}(x))$.) Moreover, within ZF_1 he proved that $R_{\kappa} \Pi \models ZF_1$, and in fact κ^{Π} is the (κ^{Π})th cardinal with this property. Friedman [3] improved this result by showing that even in the weaker theory $T = ZF_0 + (\beta)$, where $ZF_0 = KP(\mathcal{O}) + [Power set axiom]$, if κ^{Π} exists then $R_{\kappa} \Pi \prec \Sigma_1(\mathcal{O}) V$.¹

In this short note we use Friedman's result to give a new characterization of κ^{Π} (Theorem 1 below). A related characterization is given in Väänänen [5] (Corollary 5.7):

(1) $\kappa^{\Pi} = \sup\{\alpha: \alpha \text{ is } \Sigma_2\text{-definable}\},\$

where a set S is Σ_2 -definable if the predicate " $x \in S$ " is a Σ_2 -definable predicate of set theory.² (Väänänen's result is actually more general.) Here is an outline of a proof of (1). For \geq , if $\phi(x)$ is a Σ_2 (or $\Sigma_1(\mathcal{O})$) definition of " $x \in \alpha$ " then consider the following sentence ψ of second-order logic, which holds in (R_{κ}, \in) if κ is least such that $\phi(x)$ defines " $x \in \alpha$ " in (R_{κ}, \in) :

$$\psi = \text{``The universe is of the form } (R_{\delta}, \in)\text{''} \land (\exists!\beta)(\forall x)(\phi(x) \leftrightarrow x \in \beta)$$
$$\land \forall \beta [\forall x(\phi(x) \leftrightarrow x \in \beta) \rightarrow \forall \gamma \exists x \in \beta (R_{\gamma} \models \neg \phi(x))] .$$

Then ψ has a model of power at least $|\alpha|$, but it's easy to see that ψ does not have arbitrarily large models. For \leq , observe that if ϕ is a sentence of second-

Received April 18, 1983; revised April 16, 1984

^{*}Partially supported by NSF Grant MCS 79-01995.