Some Remarks on Equivalence in Infinitary and Stationary Logic

MATT KAUFMANN*

The logic L(aa) is obtained by adding a quantifier *aa* ("almost all") ranging over countable sets (see [1]). If instead one extends first-order finitary logic by allowing arbitrary conjunctions and disjunctions and quantification $\exists \langle x_{\alpha}: \alpha < \lambda \rangle$ and $\forall \langle x_{\alpha}: \alpha < \lambda \rangle (\lambda < \kappa)$ and restricts to formulas with fewer than κ free variables, one obtains the infinitary logic $L_{\infty\kappa}$ (see, for example, [3]). The following theorem extends Section 5 of [1] and answers a question of Nadel.

Theorem 1 For every cardinal κ , there are structures A and B such that A and B satisfy the same sentences of $L_{\infty\kappa}$ but not of L(aa).

Proof: Fix $\kappa > \omega$. It is routine to construct a chain $\langle A_{\alpha} : \alpha < \kappa^+ \rangle$ of structures for the vocabulary $\{X, Y, P, \epsilon\}$, satisfying the following inductive hypotheses (1) through (4) below. Here X, Y, and P are unary relation symbols and ϵ is binary. We write $A_{\alpha} = (A_{\alpha}; X_{\alpha}, Y_{\alpha}, P_{\alpha}, \in)$, and we use the standard notation $[Z]^{\omega}$ for the set of countably infinite subsets of a set Z.

- (1) $A_{\alpha} = X_{\alpha} \cup Y_{\alpha}, Y_{\alpha} = [X_{\alpha}]^{\omega}, P_{\alpha} \subseteq Y_{\alpha}$, and \in is the membership relation on $X_{\alpha} \times Y_{\alpha}$. Also $\alpha < \beta$ implies $A_{\alpha} \not\subseteq A_{\beta}$.
- $(2) |X_{\alpha}| = 2^{\kappa}.$
- (3) Suppose that $Z_0 \subseteq X_{\alpha}$ and $|Z_0| \leq \kappa$, and that $|Z| = \kappa$ and $(Z_0 \cup [Z_0]^{\omega}$, $P_{\alpha} \cap [Z_0]^{\omega}$, $\in) \subseteq (Z \cup [Z]^{\omega}, P, \in)$. Then for some $Z' \subseteq X_{\alpha+1}$, there is an isomorphism j from $(Z \cup [Z]^{\omega}, P, \in)$ onto $(Z' \cup [Z']^{\omega}, P_{\alpha+1} \cap [Z']^{\omega}, \in)$ such that j extends the identity function on $Z_0 \cup [Z_0]^{\omega}$.
- (4) If α is a limit ordinal of cofinality ω , then for all $s \in \left[\bigcup_{\beta < \alpha} X_{\beta}\right]^{\omega} \bigcup_{\beta < \alpha} [X_{\beta}]^{\omega}$, we have $s \in P_{\alpha}$.

^{*}We thank Mark Nadel for raising questions that led to the theorems in this paper. We also thank Ken Kunen for bringing Lemma 3 to our attention.