An Axiomatization of the Equivalential Fragment of the Three-Valued Logic of Łukasiewicz

JACEK K. KABZIŃSKI

The problem of axiomatizing the purely equivalential fragment of the infinite-valued Łukasiewicz logic (L_{∞}) and the corresponding variety of algebras remains open. Moreover for every $n=3,4, \ldots$ one may ask about axiomatization of the purely equivalential fragment of n-valued Łukasiewicz logic $\left(L_{n}\right)$. In this paper we give an axiomatization of the purely equivalential fragment of L_{3} and an appropriate set of identities determining the corresponding variety of algebras (see [3]).

Let us recall that the three-valued logic of $Ł u k a s i e w i c z ~ L_{3}$ is determined by the following matrix: $L_{3}=\left(\{0,1,2\},\{0\}, \rightarrow_{L}, \wedge_{L}, \vee_{L}, \sim_{L}\right)$ where $x \rightarrow_{L} y=$ $\max (0, y-x), x \wedge_{L} y=\max (x, y), x \vee_{L} y=\min (x, y)$, and $\sim_{L} x=x \rightarrow_{L} 2$ (see [5]).

The other well-known three-valued logic is the logic H_{3} considered by Heyting in [1]. It is determined by the matrix $H_{3}=\left(\{0,1,2\},\{0\}, \rightarrow_{H}\right.$, $\wedge_{H}, \vee_{H}, \sim_{H}$), where $x \rightarrow_{H} y=y$ whenever $x<y$ and $x \rightarrow_{H} y=0$ otherwise, $x \wedge_{H} y=\max (x, y), x \vee_{H} y=\min (x, y)$, and $\sim_{H} x=x \rightarrow_{H} 2$.

Let the symbols L_{3}^{\equiv} and H_{3}^{\equiv} denote the purely equivalential fragments in question. Since $x \equiv y={ }_{d f}(x \rightarrow y) \wedge(y \rightarrow x)$ then L_{3}^{\equiv} and H_{3}^{\equiv} are determined by the following matrices $\mathrm{L}_{3} \overline{=}$ and \mathbf{H}_{3} respectively: $\mathrm{L}_{3}=\left(\{0,1,2\},\{0\}, \equiv_{L}\right)$ where $x \equiv_{L} y=\max (x-y, y-x)$ and $\mathbf{H}_{3}=\left(\{0,1,2\},\{0\}, \equiv_{H}\right)$ where $x \equiv_{H} y=$ $\max (x, y)$ whenever $x \neq y$ and $x \equiv_{H} y=0$ otherwise.

It is known that neither $L_{3} \nsubseteq H_{3}$ nor $H_{3} \nsubseteq L_{3}$; for example $(\alpha \rightarrow(\alpha \rightarrow \beta)) \rightarrow$ $(\alpha \rightarrow \beta) \in H_{3}-L_{3}$ whereas $((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) \in L_{3}-H_{3}$. Nevertheless we shall prove that the purely equivalential fragments of L_{2} and H_{3} are identical.

The equality $L_{3}^{\equiv}=H_{3}$ is an immediate consequence of the fact that the matrices $\mathbf{L}_{3} \equiv$ and $\mathbf{H}_{3} \equiv$ are isomorphic. The reader will have no difficulty in verifying that the required isomorphism is the mapping $i:\{0,1,2\} \rightarrow\{0,1,2\}$, such that $i(0)=0, i(1)=2, i(2)=1$.

