Notre Dame Journal of Formal Logic Volume 25, Number 4, October 1984

An Axiomatization of the Equivalential Fragment of the Three-Valued Logic of Łukasiewicz

JACEK K. KABZIŃSKI

The problem of axiomatizing the purely equivalential fragment of the infinite-valued \mathcal{L} ukasiewicz logic (L_{∞}) and the corresponding variety of algebras remains open. Moreover for every $n = 3, 4, \ldots$ one may ask about axiomatization of the purely equivalential fragment of *n*-valued \mathcal{L} ukasiewicz logic (L_n) . In this paper we give an axiomatization of the purely equivalential fragment of L_3 and an appropriate set of identities determining the corresponding variety of algebras (see [3]).

Let us recall that the three-valued logic of Łukasiewicz L_3 is determined by the following matrix: $L_3 = (\{0, 1, 2\}, \{0\}, \rightarrow_L, \wedge_L, \vee_L, \sim_L)$ where $x \rightarrow_L y = max(0, y - x), x \wedge_L y = max(x, y), x \vee_L y = min(x, y), and <math>\sim_L x = x \rightarrow_L 2$ (see [5]).

The other well-known three-valued logic is the logic H_3 considered by Heyting in [1]. It is determined by the matrix $H_3 = (\{0, 1, 2\}, \{0\}, \rightarrow_H, \land_H, \lor_H, \sim_H)$, where $x \rightarrow_H y = y$ whenever x < y and $x \rightarrow_H y = 0$ otherwise, $x \wedge_H y = max(x, y), x \lor_H y = min(x, y)$, and $\sim_H x = x \rightarrow_H 2$.

Let the symbols L_3^{\equiv} and H_3^{\equiv} denote the purely equivalential fragments in question. Since $x \equiv y =_{df} (x \rightarrow y) \land (y \rightarrow x)$ then L_3^{\equiv} and H_3^{\equiv} are determined by the following matrices L_3^{\equiv} and H_3^{\equiv} respectively: $L_3^{\equiv} = (\{0, 1, 2\}, \{0\}, \equiv_L)$ where $x \equiv_L y = max(x - y, y - x)$ and $H_3^{\equiv} = (\{0, 1, 2\}, \{0\}, \equiv_H)$ where $x \equiv_H y = max(x, y)$ whenever $x \neq y$ and $x \equiv_H y = 0$ otherwise.

It is known that neither $L_3 \not\subseteq H_3$ nor $H_3 \not\subseteq L_3$; for example $(\alpha \to (\alpha \to \beta)) \to (\alpha \to \beta) \in H_3 - L_3$ whereas $((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \in L_3 - H_3$. Nevertheless we shall prove that the purely equivalential fragments of L_2 and H_3 are identical.

The equality $L_3^{\equiv} = H_3^{\equiv}$ is an immediate consequence of the fact that the matrices L_3^{\equiv} and H_3^{\equiv} are isomorphic. The reader will have no difficulty in verifying that the required isomorphism is the mapping $i: \{0, 1, 2\} \rightarrow \{0, 1, 2\}$, such that i(0) = 0, i(1) = 2, i(2) = 1.

Received November 2, 1983