Individual Concepts as Propositional Variables in $M L^{\nu+1}$

ALBERTO ZANARDO*

1 Introduction The modal languages $M L^{\nu}$ and $M L_{*}^{\nu}$ of Bressan (to be described in more detail in the second part of this introduction) are presented in [4] and [5]; substantially, $M L_{*}^{\nu}$ is obtained from $M L^{\nu}$ by adding propositional variables and constants. For every positive integer ν, the modal language $M L^{\nu}$ is based on a type-system τ^{ν} which has ν types $(1, \ldots, \nu)$ for individual terms and, accordingly, the semantical structures for $M L^{\nu}$ (the $M L^{\nu}$ interpretations) are constructed starting from ν individual domains D_{1}, \ldots, D_{ν} and a set Γ of (elementary) possible cases (elsewhere called worlds or points), briefly, Γ-cases. The individual terms of type r of $M L^{\nu}$ are assumed to range over individual concepts (of type r) which are functions from Γ into D_{r}. This holds similarly for the $M L_{*}^{\nu}$-interpretations, where, in addition, the propositional variables range over sets of possible cases. In every interpretation for $M L^{\nu}$ (or $M L_{*}^{\nu}$) the conceivability relation between possible cases is $\Gamma \times \Gamma$ and, hence, the corresponding calculi $M C^{\nu}$ and $M C_{*}^{\nu}$ are based on Lewis's S5.

If we consider an $M L^{\nu+1}$-interpretation in which $D_{\nu+1}$ is a two-element set, then the individual concepts of type $\nu+1$ can be considered as characteristic functions of subsets of Γ and hence they serve to represent propositions. In this paper this representation is used to reduce the concepts of $M L_{*}^{\nu}$-validity and general $M L^{\nu}$-validity (see Definition 2.2) to the analogous concepts for $M L^{\nu+1}$. In this way, the completeness of the calculus $M C_{*}^{\nu}$ (with respect to general $M L^{\nu}$-interpretations) can be deduced from that of $M C^{\nu+1}$, which is proved in [14]. In particular, in Section 3 a correspondence between $M L^{\nu+1}$-interpretations (in which $D_{\nu+1}$ is $\{0,1\}$) and $M L_{*}^{\nu}$-interpretations is defined, which becomes a bijection when restricted to general interpretations. In Section 4 it is proved that a formula p of $M L^{\nu}$ is valid (or valid in a general sense) iff the same holds for a suitable correspondent of it in $M L^{\nu+1}$. Furthermore, in Section 5,

[^0]
[^0]: *I wish to thank the referee for his detailed suggestions which have been very helpful for the second version of this paper.

