Notre Dame Journal of Formal Logic Volume 25, Number 4, October 1984

Individual Concepts as Propositional Variables in $ML^{\nu+1}$

ALBERTO ZANARDO*

1 Introduction The modal languages ML^{ν} and ML_{*}^{ν} of Bressan (to be described in more detail in the second part of this introduction) are presented in [4] and [5]; substantially, ML_{*}^{ν} is obtained from ML^{ν} by adding propositional variables and constants. For every positive integer ν , the modal language ML^{ν} is based on a *type-system* τ^{ν} which has ν types $(1, \ldots, \nu)$ for *individual terms* and, accordingly, the semantical structures for ML^{ν} (the ML^{ν} -interpretations) are constructed starting from ν individual domains D_1, \ldots, D_{ν} and a set Γ of (elementary) possible cases (elsewhere called worlds or points), briefly, Γ -cases. The individual terms of type r of ML^{ν} are assumed to range over individual concepts (of type r) which are functions from Γ into D_r . This holds similarly for the ML_{*}^{ν} -interpretations, where, in addition, the propositional variables range over sets of possible cases. In every interpretation for ML^{ν} (or ML_{*}^{ν}) the conceivability relation between possible cases is $\Gamma \times \Gamma$ and, hence, the corresponding calculi MC^{ν} and MC_{*}^{ν} are based on Lewis's S5.

If we consider an $ML^{\nu+1}$ -interpretation in which $D_{\nu+1}$ is a two-element set, then the individual concepts of type $\nu + 1$ can be considered as characteristic functions of subsets of Γ and hence they serve to represent propositions. In this paper this representation is used to reduce the concepts of ML^{ν}_{*} -validity and general ML^{ν}_{*} -validity (see Definition 2.2) to the analogous concepts for $ML^{\nu+1}$. In this way, the completeness of the calculus MC^{ν}_{*} (with respect to general ML^{ν}_{*} -interpretations) can be deduced from that of $MC^{\nu+1}$, which is proved in [14]. In particular, in Section 3 a correspondence between $ML^{\nu+1}$ -interpretations (in which $D_{\nu+1}$ is $\{0,1\}$) and ML^{ν}_{*} -interpretations. In Section 4 it is proved that a formula p of ML^{ν}_{*} is valid (or valid in a general sense) iff the same holds for a suitable correspondent of it in $ML^{\nu+1}$. Furthermore, in Section 5,

^{*}I wish to thank the referee for his detailed suggestions which have been very helpful for the second version of this paper.