Notre Dame Journal of Formal Logic Volume 24, Number 3, July 1983

On the Equivalence Between the Calculi MC^v and EC^{v+1} of A. Bressan

ALBERTO ZANARDO*

Part I General interpretations for the modal language ML^{ν}

1 Introduction The modal calculus MC^{ν} (based on the language ML^{ν}) and the extensional calculus $EC^{\nu+1}$ (based on $EL^{\nu+1}$) are presented and investigated in [2]; and in Section 15 of that work the translation $\Delta \rightarrow \Delta^{\eta}$ of ML^{ν} into $EL^{\nu+1}$ is defined (on the basis of the semantical rules for ML^{ν}). The main result concerning the function η is proved (syntactically) in [2] (Theorem 63.1). The theorem asserts that, for a suitable version of MC^{ν} ,

(1.1) $\mid_{MC^{\nu}} p \text{ iff } \mid_{FC^{\nu+1}} p^{\eta}$, for every formula $p \text{ of } ML^{\nu}$.

Obviously, the only relevant part of (1.1) is the implication from right to left, since its converse is the very goal aimed at in defining η .

Now, in [8] MC^{ν} is proved to be complete with respect to general ML^{ν} -interpretations (cf. Section 3) and an analogous result for $EC^{\nu+1}$ can be easily achieved by adapting the proof of Theorem 2 in [4]. Therefore (1.1) is a trivial consequence of

(1.2) $\models \frac{g}{MC^{\nu}} p$ iff $\models \frac{g}{EC^{\nu+1}} p^{\eta}$, for every formula p of ML^{ν} ,

where $\frac{g}{MC^{\nu}}p$ [$\frac{g}{EC^{\nu+1}}p^{\eta}$] expresses that $p[p^{\eta}]$ is true in every general model of the considered version of $MC^{\nu}[EC^{\nu+1}]$.

In this work the structures of the general interpretations for ML^{ν} and

Received January 6, 1982; revised May 17, 1982

^{*}This research was supported in part by a CNR-GNSAGA grant.